

Series HFG1E/2

SET-2

प्रश्न-पत्र कोड Q.P. Code 56/2/2

रोल नं. Roll No.								
KOII	NO	•						

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

रसायन विज्ञान (सैद्धांतिक)

CHEMISTRY (Theory)

निर्धारित समय: 3 घण्टे अधिकतम अंक: 70

Time allowed: 3 hours Maximum Marks: 70

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कुपया जाँच कर लें कि इस प्रश्न-पत्र में 35 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15
 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 23 printed pages.
- Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 35 questions.
- Please write down the serial number of the question in the answerbook before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

_{56/2/2} 245 B

\(\frac{1}{4}\)\(\fra

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यान से पढ़ें और उनका सख़्ती से पालन करें :

- (i) इस प्रश्न-पत्र में कुल 35 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-पत्र **पाँच** खण्डों में विभाजित है खण्ड **क, ख, ग, घ** तथा **ङ**।
- (iii) **खण्ड क** प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के **एक-एक** अंक के प्रश्न हैं।
- (iv) **खण्ड ख** प्रश्न संख्या 19 से 25 तक अति लघु उत्तरीय प्रकार के **दो-दो** अंकों के प्रश्न हैं।
- (v) **खण्ड ग** प्रश्न संख्या **26** से **30** तक लघ् उत्तरीय प्रकार के **तीन-तीन** अंकों के प्रश्न हैं।
- (vi) **खण्ड घ** प्रश्न संख्या **31** तथा **32** केस आधारित **चार-चार** अंकों के प्रश्न हैं।
- (vii) **खण्ड ङ** प्रश्न संख्या **33** से **35** तक दीर्घ उत्तरीय प्रकार के **पाँच-पाँच** अंकों के प्रश्न हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड **ख** के 2 प्रश्नों में, खण्ड **ग** के 2 प्रश्नों में, खण्ड **घ** के 2 प्रश्नों में तथा खण्ड **ड** के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग वर्जित है।

खण्ड - क

1. निम्नलिखित में से कौन विनाइल हैलाइड वर्ग का सदस्य है ?

1

- (a) $CH_2 = CHCH_2CH_2Cl$
- (b) $CH_2 = C CH_3$ Br
- (c) $CH_2 = CH CH_2 Br$
- (d) $CH \equiv C Br$

 $2. \qquad [\mathrm{Co}(\mathrm{en}_2)\mathrm{C} l_2]^+$ में कोबाल्ट की द्वितीयक संयोजकता क्या है ?

1

(a) 6

(b) 4

(c) 2

(d) 8

General Instructions:

Read the following instructions very carefully and follow them:

- (i) This Question Paper contains 35 questions. All questions are compulsory.
- (ii) Question Paper is divided into **FIVE** sections Section **A, B, C, D** and **E**.
- (iii) In section A question number 1 to 18 are Multiple Choice (MCQ) type questions carrying 1 mark each.
- (iv) In section B question number 19 to 25 are Very Short Answer (VSA) type questions carrying 2 marks each.
- (v) In section C question number 26 to 30 are Short Answer (SA) type questions carrying 3 marks each.
- (vi) In section D question number 31 & 32 are case-based questions carrying 4 marks each.
- (vii) In section E question number 33 to 35 are Long Answer (LA) questions carrying 5 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section **B**, 2 questions in Section **C**, 2 questions in Section **D** and 2 questions in Section **E**.
- (ix) Use of calculator is NOT allowed.

SECTION - A

1. Which of the following belongs to the class of Vinyl halides?

(a) $CH_2 = CHCH_2CH_2Cl$

(b)
$$CH_2 = C - CH_3$$

(c) $CH_2 = CH - CH_2 - Br$

(d)
$$CH \equiv C - Br$$

2. What is the secondary valency of Cobalt in $[Co(en_2)Cl_2]^+$?

(a) 6

(b) 4

(c) 2

(d) 8

56/2/2

P.T.O.

1

1

3.		न डाइएज़ोनियम क्लोराइड जब फ़ीनॉल के साथ क्रिया को कहते हैं	राइड जब फ़ीनॉल के साथ अभिक्रिया करता है, तो एक रंजक बनाता है । इस			
		क्रया का कहत ह डाइएज़ोकरण अभिक्रिया	(l ₂)	संघनन अभिक्रिया	1	
	(a)					
	(c)	युग्मन अभिक्रिया	(a)	ऐसीटिलन अभिक्रिया		
4.	शून्य	कोटि की अभिक्रिया के लिए [R] का समय के	साथ अ	ालेख का ढाल है	1	
	(a)	$\frac{+ \text{ k}}{2.303}$	(b)	- k		
	(c)	$\frac{-k}{2.303}$	(d)	+ k		
5.	प्रोटीन	मंं बहुलक हैं			1	
	(a)	न्यूक्लीक अम्लों की	(b)	ऐमीनो अम्लों की		
	(c)	मोनोसैकैराइडों की	(d)	एमीन की		
6.	विन्या	स का धारण प्रेक्षण किया जाता है			1	
	(a)	$\mathrm{S_{N}}1$ अभिक्रिया में				
	(b)	$\mathrm{S_{N}}2$ अभिक्रिया में				
	(c)	न तो $\mathrm{S_N} 1$ में और न ही $\mathrm{S_N} 2$ अभिक्रिया में				
	(d)	$\mathrm{S_N}2$ अभिक्रिया और $\mathrm{S_N}1$ अभिक्रियाओं दो	नों में			
7.	दो द्रव	ग्रों के स्थिरकाथी मिश्रण का क्वथनांक दोनों द्रवो <u>ं</u>	से निम्	नतर होगा जब यह :	1	
	(a)	राउल्ट नियम से ऋणात्मक विचलन प्रदर्शित व	ज्रता है	l		
	(b)	एक आदर्श विलयन का निर्माण करता है।				
	(c)	राउल्ट नियम से धनात्मक विचलन प्रदर्शित क	रता है ।			
	(d)	संतृप्त है।				
			_			

56/2/2

 $\left(\begin{array}{c}4\end{array}\right)$

3.		on Benzene diazonium chloride reacts with phenol, it forms a dye. This tion is called			
	(a)	Diazotisation reaction	(b)	Condensation reaction	
	(c)	Coupling reaction	(d)	Acetylation reaction	
4.	The	slope in the plot of [R] vs. time for	or a z	ero order reaction is	1
	(a)	$\frac{+ k}{2.303}$	(b)	- k	
	(c)	$\frac{-\mathrm{k}}{2.303}$	(d)	+ k	
5.	Dwo	toing and polymous of			1
υ .	(a)	teins are polymers of Nucleic acids	(b)	Amino acids	1
	(c)	Monosaccharides	(d)	Amines	
6.	Ret	ention of configuration is observe	d in		1
	(a)	$S_N 1$ reaction			
	(b)	$\mathrm{S_{N}2}$ reaction			
	(c)	Neither $S_N 1$ nor $S_N 2$ reaction			
	(d)	$\mathrm{S_{N}2}$ reaction as well as $\mathrm{S_{N}1}$ reac	tion		
7.		azeotropic mixture of two liquids aer of the two liquids when it	s will	have a boiling point lower than	1
	(a)	shows a negative deviation from	Rao	ult's law	
	(b)	forms an ideal solution			
	(c)	shows a positive deviation from	Raou	lt's law	
	(d)	is saturated			
56/2	/2		5	□50 1306 P.T	.O.

- 8. KCl के निम्नलिखित विलयनों में से किसकी मोलर चालकता का मान उच्चतम होगा ?
- 1

(a) 0.01 M

(b) 1 M

(c) 0.5 M

- (d) 0.1 M
- 9. निम्नलिखित में से कौन कैनिज़ारो अभिक्रिया नहीं देता है ?

1

- (a) $(CH_3)_3 C CHO$
- (b) $(CH_3)_2 CH CHO$
- (c) CHC
- (d) HCHO
- 10. निम्नलिखित अभिक्रियाओं में से कौन सी संभव है ?

1

- (a) $CH_3CH_2Br + Na^+O^-C(CH_3)_3 \rightarrow CH_3CH_2 O C(CH_3)_3$
- (b) $(CH_3)_3 C Cl + Na^+ O^- CH_2 CH_3 \rightarrow CH_3 CH_2 O C (CH_3)_3$
- (c) (a) और (b) दोनों
- (d) न तो (a) और न ही (b)
- 11. ऐल्डिहाइडें और कीटोनें, हाइड्रॉक्सिलऐमीन से अभिक्रिया करके बनाती हैं

1

(a) हाइड्रैज़ोन

(b) सायनोहाइड्रिन

(c) सेमीर्कोबेज़ोन

- (d) ऑक्सिम
- 12.~ अभिक्रिया $2A \to 3B$ के लिए, अभिक्रिया वेग $-\frac{d[A]}{dt}$ िकसके बराबर है ?

1

(a) $\frac{+3}{2} \frac{d[B]}{dt}$

(b) $\frac{+2}{3} \frac{d[B]}{dt}$

(c) $\frac{+1}{3} \frac{d[B]}{dt}$

(d) $+\frac{2d[B]}{dt}$

- 8. Which of the following solutions of KCl will have the highest value of molar conductivity?
- 1

(a) $0.01 \, \mathrm{M}$

(b) 1 M

(c) 0.5 M

- (d) 0.1 M
- 9. Which of the following does not give Cannizaro reaction?

1

(a) $(CH_3)_3 C - CHO$

(b) $(CH_3)_2 CH - CHO$

(c) CHO

- (d) HCHO
- 10. Which of the following reactions are feasible?

1

- (a) $CH_3CH_2Br + Na^+O^-C(CH_3)_3 \rightarrow CH_3CH_2-O-C(CH_3)_3$
 - (b) $(CH_3)_3 C Cl + Na^+ O^- CH_2 CH_3 \rightarrow CH_3 CH_2 O C(CH_3)_3$
 - (c) Both (a) and (b)
 - (d) Neither (a) nor (b)
- 11. Aldehydes and ketones react with hydroxylamine to form

1

(a) hydrazones

(b) cyanohydrins

(c) semicarbazones

- (d) Oxime
- 12. For a reaction $2A \rightarrow 3B$, rate of reaction $-\frac{d[A]}{dt}$ is equal to

1

(a) $\frac{+3}{2} \frac{d[B]}{dt}$

(b) $\frac{+2}{3} \frac{d[B]}{dt}$

(c) $\frac{+1}{3} \frac{d[B]}{dt}$

(d) $+\frac{2d[B]}{dt}$

56/2/2

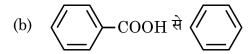
संकुल	ा डाइक्लोरिडोबिस (एथेन $-1,2$ -डाइऐमी \cdot	न) प्लैटिनम	(IV) नाइट्रेट का सूत्र है	1
(a)	$[\mathrm{Pt}\ \mathrm{C}l_2(\mathrm{en})_2\ (\mathrm{NO}_3)_2]$	(b)	$[\mathrm{Pt}\;\mathrm{C}l_2(\mathrm{en})_2]\;(\mathrm{NO}_3)_2$	
(c)	$[\mathrm{Pt}\;\mathrm{C}l_2(\mathrm{en})_2\;(\mathrm{NO}_3)]\mathrm{NO}_3$	(d)	$[\mathrm{Pt}\;(\mathrm{en})_2\;(\mathrm{NO}_3)_2]\mathrm{C}l_2$	
3d 🕅	ोणी की निम्नलिखित धातुओं में से किसक	ा गलनांक न्य	गूनतम है ?	1
(a)	Fe	(b)	Mn	
(c)	Zn	(d)	Cu	
		गिचे दो कथ	न दिए गए हैं । निम्नलिखित विकल्पों में से	
(a)	(A) और (R) दोनों सत्य हैं तथा (R), ((A) की सही	व्याख्या है ।	
(b)	(A) और (R) दोनों सत्य हैं, लेकिन (R)), (A) की र	नहीं व्याख्या नहीं है ।	
(c)	(A) सत्य है, लेकिन (R) असत्य है।			
(d)	(A) असत्य है, लेकिन (R) सत्य है।			
अभि	कथन (A) : क्वथनांक का उन्नयन एक अ	णुसंख्य गुण१	घर्म है ।	1
कारण	ा (R): विलयन के वाष्प दाब में कमी के	कारण क्वथ	नांक का उन्नयन होता है ।	
अभि	कथन (A) : क्लोरो-बेन्जीन इलेक्ट्रॉनरागी	प्रतिस्थापन	अभिक्रियाओं के लिए प्रतिरोधी होती है।	1
कारण	। (R) : अनुनाद के कारण क्लोरोबेन्जीन मे	र्ग C-C <i>l</i> आ	बंध में आंशिक द्विबंध गुण आ जाते हैं।	
अभि	कथन (A) : वैद्युत-अपघट्य की सांद्रता घ	गटने पर चाल	किता घटती है ।	1
कारण	। (R): तनुकरण करने पर प्रति इकाई अ जाती है।	ायतन में विश्	युतधारा ले जाने वाले आयनों की संख्या घट	
अभि	कथन (A) : संक्रमण धातुओं की कणन ऐ	न्थैल्पी उच्च	होती है ।	1
कारण	ा (R) : संक्रमण धातुओं में अयुगलित आबंधन होता है ।	इलेक्ट्रॉनों व	की अधिक संख्या के कारण दुर्बल धात्विक	
/2	<	$\overline{8}$		
	(a) (c) (a) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(a) [Pt Cl ₂ (en) ₂ (NO ₃) ₂] (c) [Pt Cl ₂ (en) ₂ (NO ₃)]NO ₃ 3d श्रेणी की निम्निखित धातुओं में से किसक (a) Fe (c) Zn अभिकथन (A) और कारण (R) से अंकित न सर्वाधिक उपयुक्त उत्तर का चयन कीजिए : (a) (A) और (R) दोनों सत्य हैं तथा (R), (b) (A) और (R) दोनों सत्य हैं, लेकिन (R) (c) (A) सत्य है, लेकिन (R) असत्य है । (d) (A) असत्य है, लेकिन (R) सत्य है । अभिकथन (A) : क्वथनांक का उन्नयन एक अकारण (R) : विलयन के वाष्प दाब में कमी के अभिकथन (A) : क्लोरो-बेन्जीन इलेक्ट्रॉनरागी कारण (R) : अनुनाद के कारण क्लोरोबेन्जीन में अभिकथन (A) : वैद्युत-अपघट्य की सांद्रता ह कारण (R) : तनुकरण करने पर प्रति इकाई अजाती है । अभिकथन (A) : संक्रमण धातुओं की कणन ऐ कारण (R) : संक्रमण धातुओं में अयुगलित आबंधन होता है ।	(a) [Pt Cl ₂ (en) ₂ (NO ₃) ₂] (b) (c) [Pt Cl ₂ (en) ₂ (NO ₃)]NO ₃ (d) 3d श्रेणी की निम्निलेखित धातुओं में से किसका गलनांक नर (a) Fe (b) (c) Zn (d) अभिकथन (A) और कारण (R) से अंकित नीचे दो कथ सर्वाधिक उपयुक्त उत्तर का चयन कीजिए: (a) (A) और (R) दोनों सत्य हैं तथा (R), (A) की सही (b) (A) और (R) दोनों सत्य हैं, लेकिन (R), (A) की सही (c) (A) सत्य है, लेकिन (R) असत्य है। (d) (A) असत्य है, लेकिन (R) सत्य है। अभिकथन (A): क्वथनांक का उन्नयन एक अणुसंख्य गुणक्ष कारण (R): विलयन के वाष्य दाब में कमी के कारण क्वथन अभिकथन (A): क्वोरो-बेन्जीन इलेक्ट्रॉनरागी प्रतिस्थापन कारण (R): अनुनाद के कारण क्लोरोबेन्जीन में C-Cl आज अभिकथन (A): वैद्युत-अपघट्य की सांद्रता घटने पर चाल कारण (R): तनुकरण करने पर प्रति इकाई आयतन में विद्युताती है। अभिकथन (A): संक्रमण धातुओं की कणन ऐन्थैल्पी उच्च कारण (R): संक्रमण धातुओं में अयुगलित इलेक्ट्रॉनों कारण (R): संक्रमण धातुओं से क्वयुगलित इलेक्ट्रॉनों कारण (R): संक्रमण धातुओं से क्वयुगलित इलेक्ट्रॉनों कारण (R): संक्रमण धातुओं से क्वयुगलित इलेक्ट्रॉनों स्वाविव्युत्य से स्वव्युत्य से स्वव्युत्य से स्वव्युत्य से स्वव्युत्य से स्वव्युत्य से स्वव्युत्य से से स्वव्युत्य से से स्वव्युत्य से से स्वव्युत्य से से से स्वव्युत्य से से से से स्वव्युत्य से से से से से स्वय्युत्य से	(c) [Pt Cl ₂ (en) ₂ (NO ₃)]NO ₃ (d) [Pt (en) ₂ (NO ₃) ₂]Cl ₂ 3d श्रेणी की निम्नलिखित धातुओं में से किसका गलनांक न्यूनतम है ? (a) Fe (b) Mn (c) Zn (d) Cu अभिकथन (A) और कारण (R) से अंकित नीचे दो कथन दिए गए हैं । निम्नलिखित विकल्पों में से सर्वाधिक उपयुक्त उत्तर का चयन कीजिए : (a) (A) और (R) दोनों सत्य हैं तथा (R), (A) की सही व्याख्या है । (b) (A) और (R) दोनों सत्य हैं, लेकिन (R), (A) की सही व्याख्या नहीं है । (c) (A) सत्य है, लेकिन (R) असत्य है । (d) (A) असत्य है, लेकिन (R) सत्य है । अभिकथन (A) : क्वथनांक का उन्नयन एक अणुसंख्य गुणधर्म है । कारण (R) : विलयन के वाष्प दाब में कमी के कारण क्वथनांक का उन्नयन होता है । अभिकथन (A) : क्वोरो-बेन्जीन इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाओं के लिए प्रतिरोधी होती है । कारण (R) : अनुनाद के कारण क्लोरोबेन्जीन में C-Cl आवंध में आंशिक द्विबंध गुण आ जाते हैं । अभिकथन (A) : वैद्युत-अपघट्य की सांद्रता घटने पर चालकता घटती है । कारण (R) : तनुकरण करने पर प्रति इकाई आयतन में विद्युतधारा ले जाने वाले आयनों की संख्या घट जाती है । अभिकथन (A) : संक्रमण धातुओं की कणन ऐन्थैल्पी उच्च होती है । कारण (R) : संक्रमण धातुओं में अयुगलित इलेक्ट्रॉनों की अधिक संख्या के कारण दुर्बल धात्विक आवंधन होता है ।

13. The formula of the complex dichloridobis (ethane −1, 2-diamine) plat					
	(1V) (a)	nitrate is $[Pt Cl_2(en)_2 (NO_3)_2]$	(b)	$[\mathrm{Pt}\;\mathrm{C}l_2(\mathrm{en})_2]\;(\mathrm{NO}_3)_2$	1
	(c)	$[\operatorname{Pt} \operatorname{C}l_2(\operatorname{en})_2 (\operatorname{NO}_3)]\operatorname{NO}_3$		$[\text{Pt (en)}_2 \text{ (NO}_3)_2] \text{C} l_2$	
14.	Whi		tals of	3d series has the lowest melting	1
	(a)	Fe	(b)	Mn	
	(c)	Zn	(d)	Cu	
		ect the most appropriate answer Both (A) and (R) are true and (from t(R) is t	_	
	(c)	(A) is true, but (R) is false.			
	(d)	(A) is false, but (R) is true.			
15.		ertion (A): Elevation in boiling ason (R): The lowering of vapour in boiling point.	_	is a colligative property. sure of solution causes elevation	1
16.		reaction.		ant to electrophilic substitution ne acquires partial double bond	1
17.		electrolyte.		with decrease in concentration of lume that carry the current in a	1
18.		ertion (A): Transition metals hason (R): Greater number of uresults in weak metallic bonding	ınpaire	gh enthalpy of atomisation. ed electrons in transition metals	1
56/2	'2		9	150 1575 P.T.	О.

खण्ड – ख

19.	(a)	a) कारण दीजिए :					
		(i) मर्क्यूरी सेल अपने संपूर्ण कार्य अवधि में स्थिर विभव प्रदान करता है।					
	(ii) वैद्युत-अपघटनी चालकत्व के प्रायोगिक निर्धारण में दिष्ट धारा (DC) प्रयुक्त नहीं र्व						
		है ।					
		अथवा					
	(b)	एक उदाहरण सहित ईंधन सेल को परिभाषित कीजिए । प्राथमिक और संचायक बैटरियों की तुलना					
		में ईंधन सेल के क्या लाभ हैं ?	2				
20.		C पर शुद्ध द्रव X और शुद्ध द्रव Y के वाष्प दाब क्रमशः 120 mm Hg और 160 mm Hg हैं।					
		X और Y के समान मोलों को मिलाकर एक आदर्श विलयन बनाया जाता है, तो विलयन का वाष्प					
	दाब प	मिकिलित कीजिए।	2				
21.	(a)	निम्नलिखित के आई यू पी ए सी नाम लिखिए :	< 1				
		(i) $[\text{Co(NH}_3)_5(\text{ONO})]^{2+}$					
		(ii) $K_2[NiCl_4]$					
		अथवा					
	(b)	(i) कीलेट संकुल क्या है ? एक उदाहरण दीजिए।					
		(ii) हेटेरोलेप्टिक संकुल क्या हैं ? एक उदाहरण दीजिए।	< 1				
22.	(a)	अणु ${f A}$ का ${f B}$ में रूपान्तरण द्वितीय कोटि की बलगतिकी के अनुरूप होता है । यदि ${f A}$ की सांद्रता					
		तीन गुनी कर दी जाए तो ${f B}$ के निर्माण होने के वेग पर क्या प्रभाव पड़ेगा ? ${f 2}$ >	< 1				
	(b)	एक उदाहरण सहित छद्म प्रथम कोटि अभिक्रिया की परिभाषा लिखिए।					
23.	(a)	न्यूक्लिओसाइड और न्यूक्लिओटाइड में क्या अंतर है ?	< 1				
	(b)	थायमीन युक्त DNA से प्राप्त न्यूक्लिओटाइड का जल-अपघटन करने पर क्या उत्पाद निर्मित होंगे ?					
24.	निम्ना	लिखित में सम्मिलित रासायनिक समीकरण लिखिए :	< 1				
	(a)	कोल्बे अभिक्रिया					
	` /	विलियम्सन संश्लेषण					
	` '						
56/2	/2						

$\mathbf{SECTION} - \mathbf{B}$


19.	(a)	Give	e reasons:	× 1
		(i)	Mercury cell delivers a constant potential during its life time.	
		(ii)	In the experimental determination of electrolytic conductance, Direct Current (DC) is not used.	
			OR	
	(b)		ine fuel cell with an example. What advantages do the fuel cells e over primary and secondary batteries?	2
20.	mm	Hg a	our pressure of pure liquid X and pure liquid Y at 25 °C are 120 and 160 mm Hg respectively. If equal moles of X and Y are mixed in ideal solution, calculate the vapour pressure of the solution.	2
21.	(a)	Wri	te the IUPAC names of the following:	× 1
		(i)	$[\text{Co(NH}_3)_5(\text{ONO})]^{2+}$	
		(ii)	$\mathrm{K}_{2}[\mathrm{NiC}l_{4}]$	
			OR	
	(b)	(i)	What is a chelate complex? Give one example.	
		(ii)	What are heteroleptic complexes? Give one example. 2	× 1
22.	(a)	cond	e conversion of molecule A to B followed second order kinetics. If centration of A increased to three times, how will it affect the rate formation of B?	× 1
	(b)	Defi	ine Pseudo first order reaction with an example.	
23.	(a)	Wha	at is the difference between a nucleoside and nucleotide? 2	× 1
	(b)		at products would be formed when a nucleotide from DNA taining thymine is hydrolysed?	
24.	Wri	te the	e chemical equation involved in the following:	× 1
	(a)	Koll	be's reaction	
56/2	(b) /2	Will	liamson synthesis 11 P.7	г.о.

25. निम्नलिखित रूपान्तरण अधिकतम दो चरणों में कीजिए :

 2×1

(a)
$$CH_3CN$$
 से $CH_3 - C - CH_3$ O

खण्ड – ग

- 26. (a) $[\mathrm{Co(en)_2C}l_2]^{2+}$ के ज्यामितीय समावयव खींचिए । $[\mathrm{Co(en)_2C}l_2]^{2+}$ का कौन सा ज्यामितीय समावयव ध्रुवण घूर्णक नहीं है और क्यों ? $\mathbf{2+1}$
 - (b) $[{
 m CoF}_6]^{3-}$ का संकरण एवं चुम्बकीय व्यवहार लिखिए । $[{
 m Gal} \ {
 m Gal} \$
- 27. $F-CH_2-COOH$ (मोलर द्रव्यमान = 78 g mol $^{-1}$) के 19.5 g को 500 g जल में घोलने पर हिमांक में $1^{\circ}C$ का अवनमन देखा गया । $F-CH_2-COOH$ के लिए वियोजन-मात्रा परिकलित कीजिए ।

[दिया है : जल के लिए ${
m K_f}$ = $1.86~{
m K~kg~mol^{-1}}].$

3

28. निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए :

- 3×1
- (a) C_5H_{10} का कौन सा समावयव उज्ज्वल सूरज की रोशनी में एकल मोनोक्लोरो यौगिक C_5H_9Cl देता है ?
- (b) निम्नलिखित यौगिकों को ${
 m S_N}2$ अभिक्रिया के प्रति बढ़ती हुई अभिक्रियाशीलता के क्रम में ${
 m cau}$ वस्थित कीजिए :

2-ब्रोमोपेन्टेन, 1-ब्रोमोपेन्टेन, 2-ब्रोमो-2-मेथिलब्यूटेन

25. Do the following conversions in not more than two steps:

 2×1

- (a) CH_3CN to $CH_3 C CH_3$ O
- (b) COOH to

SECTION - C

- 26. (a) Draw the geometrical isomers of $[\text{Co(en)}_2\text{C}l_2]^{2+}$. Which geometrical isomer of $[\text{Co(en)}_2\text{C}l_2]^{2+}$ is not optically active and why? 2+1
 - (b) Write the hybridisation and magnetic behaviour of $[CoF_6]^{3-}$.

[Given : Atomic number of Co = 27]

27. When $19.5~{\rm g}$ of ${\rm F-CH_2-COOH}$ (Molar mass = 78 g mol⁻¹), is dissolved in 500 g of water, the depression in freezing point is observed to be 1°C. Calculate the degree of dissociation of ${\rm F-CH_2-COOH}$.

[Given : K_f for water = 1.86 K kg mol⁻¹]

3

28. Answer any **3** of the following:

- 3×1
- (a) Which isomer of C_5H_{10} gives a single monochloro compound C_5H_9Cl in bright sunlight ?
- (b) Arrange the following compounds in increasing order of reactivity towards $S_{\rm N}2$ reaction :
 - 2-Bromopentane, 1-Bromopentane, 2-Bromo-2-methylbutane

- (c) ऑर्थो- तथा मेटा-समावयवियों की अपेक्षा पैरा-डाइक्लोरोबेन्जीन का गलनांक उच्च क्यों होता है ?
- (d) निम्नलिखित में A और B की पहचान कीजिए:

29. एक प्रथम कोटि की अभिक्रिया को 50% पूर्ण होने में $300~{
m K}$ पर 30 मिनट लगते हैं और $320~{
m K}$ पर 10 मिनट लगते हैं । अभिक्रिया के लिए सि्रक्रियण ऊर्जा (${
m E_a}$) परिकलित कीजिए ।

$$[R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}]$$

3

[दिया है : $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$]

30. (a) (i) निम्नलिखित अभिक्रिया की कार्यविधि लिखिए:

2 + 1

$$2CH_3CH_2OH \xrightarrow{H^+} CH_3 - CH_2 - O - CH_2 - CH_3 + H_2O$$

(ii) क्यों ऑर्थो-नाइट्रोफ़ीनॉल भाप द्वारा वाष्पित होती है जबिक पैरा-नाइट्रोफ़ीनॉल नहीं ?

अथवा

(b) क्या होता है जब

 3×1

- (i) ऐनिसोल की $\mathrm{CH_3C}$ l/निर्जल $\mathrm{A} l\mathrm{C} l_3$ के साथ अभिक्रिया की जाती है ?
- (ii) फ़ीनॉल का $\mathrm{Na_2Cr_2O_7/H}^+$ द्वारा ऑक्सीकरण किया जाता है ?
- (iii) $(CH_3)_3 C OH$ को $573 \ K$ पर Cu के साथ गरम किया जाता है ? अपने उत्तर के समर्थन में रासायनिक समीकरण लिखिए।

- (c) Why p-dichlorobenzene has higher melting point than those of orthoand meta-isomers?
- (d) Identify A and B in the following:

29. A first order reaction is 50% complete in 30 minutes at 300 K and in 10 minutes at 320 K. Calculate activation energy (E_a) for the reaction.

$$[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}]$$

3

[Given: $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$]

30. (a) (i) Write the mechanism of the following reaction:

2 + 1

$$2CH_3CH_2OH \xrightarrow{H^+} CH_3 - CH_2 - O - CH_2 - CH_3 + H_2O$$

(ii) Why ortho-nitrophenol is steam volatile while para-nitrophenol is not?

OR

- (b) What happens when
 - (i) Anisole is treated with CH_3Cl /anhydrous $AlCl_3$?

 3×1

- (ii) Phenol is oxidised with $Na_2Cr_2O_7/H^+$?
- (iii) $(CH_3)_3 C OH$ is heated with Cu/573 K?

Write chemical equation in support of your answer.

56/2/2

 $\left(\begin{array}{c}15\end{array}\right)$

1

खण्ड – घ

निम्नलिखित प्रश्न, केस आधारित प्रश्न हैं । अनुच्छेद को सावधानीपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए :

31. कार्बोहाइड्रेट, ध्रुवण घूर्णक ऐल्डिहाइड और कीटोन होते हैं । उन्हें सैकैराइड भी कहते हैं । उन सभी कार्बोहाइड्रेटों को जो फेलिंग विलयन तथा टॉलेन अभिकर्मक को अपचित कर देते हैं, अपचायी शर्करा कहते हैं । ग्लूकोस, जो कि स्तनधारियों के लिए ऊर्जा का प्रमुख स्रोत हैं, स्टार्च के जलअपघटन से प्राप्त होता है । विटामिन आहार में आवश्यक सहायक भोज्यकारक हैं । प्रोटीन α-ऐमीनो अम्लों के बहुलक हैं और जीवधारियों में विभिन्न संरचनात्मक एवं गतिज क्रियाओं को संपादित करते हैं । विटामिनों की कमी से अनेकों रोग हो जाते हैं ।

निम्नलिखित के उत्तर दीजिए:

- (a) ग्लूकोस का पेन्टाऐसीटेट, हाइड्राक्सिलऐमीन के साथ अभिक्रिया नहीं करता है। यह क्या इंगित करता है?
- (b) विटामिन C को हमारे शरीर में संचित क्यों नहीं किया जा सकता है ?
- (c) प्रोटीनों से संबंधित निम्नलिखित की परिभाषा लिखिए :
 - (i) पेप्टाइड बंध
 - (ii) विकृतीकरण 2 imes 1

अथवा

- (c) कार्बोहाइड्रेटों से संबंधित निम्नलिखित की परिभाषा लिखिए:
 - (i) ऐनोमर
 - (ii) ग्लाइकोसिडिक बंध 2 imes 1

SECTION - D

The following questions are case based questions. Read the passage carefully and answer the questions that follow:

31. Carbohydrates are optically active polyhydroxy aldehydes and ketones. They are also called saccharides. All those carbohydrates which reduce Fehling's solution and Tollen's reagent are referred to as reducing sugars. Glucose, the most important source of energy for mammals, is obtained by the hydrolysis of starch. Vitamins are accessory food factors required in the diet. Proteins are the polymers of α-amino acids and perform various structural and dynamic functions in the organisms. Deficiency of vitamins leads to many diseases.

Answer the following:

(a) The penta-acetate of glucose does not react with Hydroxylamine.

What does it indicate?

1

(b) Why cannot vitamin C be stored in our body?

1

- (c) Define the following as related to proteins:
 - (i) Peptide linkage
 - (ii) Denaturation

 2×1

OR

- (c) Define the following as related to carbohydrates:
 - (i) Anomers
 - (ii) Glycosidic linkage

 2×1

56/2/2

17

32. कार्बन की अपेक्षा ऑक्सीजन की विद्युत-ऋणात्मकता उच्च होने के कारण कार्बन-ऑक्सीजन द्विक आबंध एल्डिहाइडों और कीटोनों में ध्रुवित हो जाता है । अतः वे अनेक नाभिकरागियों जैसे HCN, $NaHSO_3$, ऐल्कोहॉलों, अमोनिया व्युत्पन्नों और ग्रीन्यार अभिकर्मकों के साथ नाभिकरागी योगज अभिक्रियाएँ देते हैं । कीटोनों की अपेक्षा ऐल्डिहाइड मृदु ऑक्सीकरण अभिकर्मकों द्वारा आसानी से ऑक्सीकृत हो जाते हैं । कार्बोक्सिलिक अम्ल का कार्बोनिल समूह ऐल्डिहाइडों और कीटोनों की अभिक्रियाएँ नहीं देता है । कार्बोक्सिलिक अम्ल ऐल्कोहॉलों एवं अधिकतर अति सरल फ़ीनॉलों से काफी अधिक अम्लीय होते हैं ।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (a) जब एक एल्डिहाइड शुष्क HCl की उपस्थिति में ऐल्कोहॉल के आधिक्य के साथ अभिक्रिया करता है तो निर्मित उत्पाद का नाम लिखिए ।
- (b) फ़ीनॉल की तुलना में कार्बोक्सिलिक अम्ल अधिक प्रबल अम्ल क्यों होता है ?
- (c) (i) निम्नलिखित यौगिकों को ${
 m CH_3MgBr}$ के प्रति उनकी अभिक्रियाशीलता के बढ़ते क्रम में व्यवस्थित कीजिए :

$$\begin{array}{c} \mathrm{CH_3CHO,\,(CH_3)_3C-C-CH_3,\,CH_3-C-CH_3} \\ \mathrm{O} \end{array}$$

(ii) प्रोपेनैल और प्रोपेनोन में विभेद करने के लिए रासायनिक परीक्षण लिखिए। 2 imes 1

अथवा

(c) निम्नलिखित में मुख्य उत्पाद लिखिए :

(i)
$$(Ag(NH_3)_2)^+$$
 $(Bg(NH_3)_2)^+$

(ii)
$$H_2$$
NCONHN H_2

 2×1

1

1

32. The carbon – oxygen double bond is polarised in aldehydes and ketones due to higher electronegativity of oxygen relative to carbon. Therefore they undergo nucleophilic addition reactions with a number of nucleophiles such as HCN, NaHSO₃, alcohols, ammonia derivatives and Grignard reagents. Aldehydes are easily oxidised by mild oxidising agents as compared to ketones. The carbonyl group of carboxylic acid does not give reactions of aldehydes and ketones. Carboxylic acids are considerably more acidic than alcohols and most of simple phenols.

Answer the following:

- (a) Write the name of the product when an aldehyde reacts with excess alcohol in presence of dry HCl.
- (b) Why carboxylic acid is a stronger acid than phenol?
- (c) (i) Arrange the following compounds in increasing order of their reactivity towards CH₃MgBr:

$$\begin{array}{c} \mathrm{CH_3CHO,\,(CH_3)_3C-C-CH_3,\,CH_3-C-CH_3} \\ \mathrm{O} \end{array}$$

(ii) Write a chemical test to distinguish between propanal and propanone. 2×1

OR

(c) Write the main product in the following:

(i)
$$(Ag(NH_3)_2)^+$$
 $(Bg(NH_3)_2)^+$

(ii)
$$H_2$$
NCONHNH₂ 2×1

56/2/2 19 P.T.O.

खण्ड – ङ

- 33. (a) $2 \times 10^{-3} \,\mathrm{M}$ मेथेनॉइक अम्ल की चालकता $8 \times 10^{-5} \,\mathrm{S} \,\mathrm{cm}^{-1}$ है । यदि मेथेनॉइक अम्ल के लिए $\wedge_{\mathrm{m}}^{\mathrm{o}}$ का मान $404 \,\mathrm{S} \,\mathrm{cm}^{2}\mathrm{mol}^{-1}$ है तो इसकी मोलर चालकता एवं वियोजन मात्रा परिकलित कीजिए । $\mathbf{3+2}$
 - (b) $298~{
 m K}$ पर दी हुई अभिक्रिया के लिए $\Delta_r G^\circ$ और $\log~{
 m K}_c$ परिकलित कीजिए :

$$\mathrm{Ni_{(s)}} + 2\mathrm{Ag^+}_{(aq)}$$
 \Longrightarrow $\mathrm{Ni^{2^+}}_{(aq)} + 2\mathrm{Ag_{(s)}}$ दिया है : $\mathrm{E^\circ_{N_i}}^{2^+}_{N_i} = -0.25 \ \mathrm{V}, \ \mathrm{E^\circ_{Ag^+}}_{Ag^+} = +0.80 \ \mathrm{V}$ $\mathrm{1F} = 96500 \ \mathrm{C} \ \mathrm{mol^{-1}}.$

34. (a) (I) निम्नलिखित के कारण दीजिए:

3 + 2

- (i) Mn^{3+}/Mn^{2+} युग्म के लिए E^o का मान Cr^{3+}/Cr^{2+} के मान से बहुत अधिक धनात्मक होता है ।
- (ii) जलीय विलयन में Sc^{3+} रंगहीन है जबिक Ti^{3+} रंगीन है ।
- (iii) ऐक्टिनॉयड ऑक्सीकरण अवस्थाओं का विस्तृत परास प्रदर्शित करते हैं।
- (II) MnO_2 से KMnO_4 के विरचन के लिए रासायनिक समीकरण लिखिए ।

अथवा

(b) (I) निम्नलिखित के कारण लिखिए:

2 + 2 + 1

- (i) संक्रमण धातुएँ मिश्रातुएँ बनाती हैं।
- (ii) Ce^{4+} एक प्रबल ऑक्सीकारक है।
- (II) तैन्थेनॉयडों और ऐक्टिनॉयडों के रसायन में एक समानता और एक अंतर लिखिए।
- (III) निम्नलिखित आयनिक समीकरण को पूर्ण कीजिए :

$$\operatorname{Cr_2O_7^{2-}} + 2\operatorname{OH^-} \longrightarrow$$

SECTION - E

- 33. (a) Conductivity of 2×10^{-3} M methanoic acid is 8×10^{-5} S cm⁻¹. Calculate its molar conductivity and degree of dissociation if $\wedge_{\rm m}^{\rm o}$ for methanoic acid is 404 S cm²mol⁻¹.
 - (b) Calculate the $\Delta_r G^{\circ}$ and log K_c for the given reaction at 298 K :

$$Ni_{(s)} + 2Ag^{+}_{(aq)} \Longrightarrow Ni^{2+}_{(aq)} + 2Ag_{(s)}$$

Given :
$$E^{\circ}_{N_i^{2+}/N_i} = -0.25 \text{ V}, E^{\circ}_{Ag^+/Ag} = +0.80 \text{ V}$$

 $1F = 96500 \text{ C mol}^{-1}$.

34. (a) (I) Account for the following:

3 + 2

- (i) E^o value for Mn^{3+} / Mn^{2+} couple is much more positive than that for Cr^{3+} / Cr^{2+} .
- (ii) Sc^{3+} is colourless whereas Ti^{3+} is coloured in an aqueous solution.
- (iii) Actinoids show wide range of oxidation states.
- (II) Write the chemical equations for the preparation of ${\rm KMnO_4}$ from ${\rm MnO_2}.$

OR

(b) (I) Account for the following:

2 + 2 + 1

- (i) Transition metals form alloys.
- (ii) Ce⁴⁺ is a strong oxidising agent.
- (II) Write one similarity and one difference between chemistry of Lanthanoids and Actinoids.
- (III) Complete the following ionic equation:

$$Cr_2O_7^{2-} + 2OH^- \longrightarrow$$

35. (a) (I) कारण दीजिए:

3 + 2

- (i) यद्यपि ऐमीनो समूह इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाओं में आर्थो एवं पैरा निर्देशक होता है फिर भी ऐनिलीन नाइट्रीकरण द्वारा यथेष्ट मात्रा में मेटानाइट्रोऐनिलीन देती है।
- (ii) जलीय विलयन में $(CH_3)_3N$ की अपेक्षा $(CH_3)_2$ NH अधिक क्षारकीय होती है ।
- (iii) ऐल्किल हैलाइडों का अमीनो-अपघटन शुद्ध प्राथमिक ऐमीनो के विरचन के लिए अच्छी विधि नहीं है।
- (II) निम्नलिखित में सम्मिलित अभिक्रिया लिखिए :
 - (i) कार्बिल ऐमीन परीक्षण
 - (ii) गैब्रिएल थैलिमाइड संश्लेषण

अथवा

(b) (I) निम्नलिखित अभिक्रियाओं में A, B और C की संरचनाएँ लिखिए :

3 + 1 + 1

- (II) ऐनिलीन फ्रीडेल-क्राफ्ट्स अभिक्रिया क्यों नहीं देती है ?
- (III) निम्नलिखित को उनके क्वथनांकों के बढ़ते क्रम में व्यवस्थित कीजिए :

35. (a) (I) Give reasons:

- 3 + 2
- (i) Aniline on nitration gives good amount of m-nitroaniline, though $-{\rm NH_2}$ group is o/p directing in electrophilic substitution reactions.
- (ii) $(CH_3)_2$ NH is more basic than $(CH_3)_3$ N in an aqueous solution.
- (iii) Ammonolysis of alkyl halides is not a good method to prepare pure primary amines.
- (II) Write the reaction involved in the following:
 - (i) Carbyl amine test
 - (ii) Gabriel phthalimide synthesis

OR

(b) (I) Write the structures of A, B and C in the following reactions: 3 + 1 + 1

(i)
$$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - N_2^+ C l^- \xrightarrow{\quad CuCN \quad } A \xrightarrow{\quad H_2O/H^+ \quad } B \xrightarrow{\quad NH_3 \quad } C$$

(ii) Fe/HC
$$l$$
 A NaNO₂+HC l B C_2 H₅OH C

- (II) Why aniline does not undergo Friedal-Crafts reaction?
- (III) Arrange the following in increasing order of their boiling point:

$$C_2H_5OH, C_2H_5NH_2, (C_2H_5)_3N$$

