

1				
Se	ries : 6ZXWY/6	$[SET \sim 1]$		
रोल नं. Roll N	Io.	प्रेश्न-पत्र कोड Q.P. Code 55/6/1		
		परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Q.P. Code on the title page of the answer-book.		
	भौतिक विज्ञान (सं PHYSICS (T			
	lowed : 3 hours	Maximum Marks : 70		
नोट / N	ОТЕ	#		
(I)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 3	1 हैं।		
	Please check that this question paper			
(II)		त्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर		
	Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.			
(III)	[)			
	Please check that this question paper	r contains 33 questions.		
(IV)	क्रॅमांक अवश्य लिखें।	ाहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का Number of the question in the efore attempting it.		
(V)	10.15 बजे किया जाएगा। 10.15 बजे से 10.3 इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर 15 minute time has been allotted question paper will be distributed	to read this question paper. The d at 10.15 a.m. From 10.15 a.m. to the question paper only and will not		

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र पाँच खण्डों में विभाजित है खण्ड क, ख, ग, घ एवं ङ।
- (iii) खण्ड क में प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) खण्ड ख में प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है।
- (v) खण्ड ग में प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) खण्ड घ में प्रश्न संख्या 29 तथा 30 केस अध्ययन-आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) खण्ड ङ में प्रश्न संख्या 31 से 33 तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए एक अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग वर्जित है।

जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$\begin{split} \mathbf{c} &= 3 \times 10^8 \text{ m/s} \\ \mathbf{h} &= 6 \cdot 63 \times 10^{-34} \text{ Js} \\ \mathbf{e} &= 1 \cdot 6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8 \cdot 854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \\ \text{\veechar{e}} \mbox{$$\dot{r}} \m$$

55/6/1

Page 2 of 31

#

General Instructions :

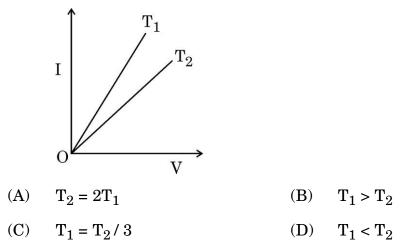
Read the following instructions carefully and follow them :

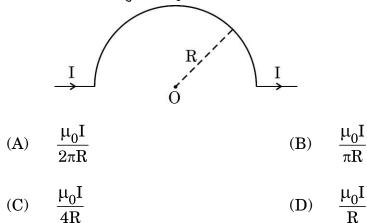
- (i) This question paper contains **33** questions. **All** questions are **compulsory**.
- (ii) This question paper is divided into five sections Sections A, B, C, D and E.
- (iii) In Section A Questions no. 1 to 16 are Multiple Choice type questions. Each question carries 1 mark.
- (iv) In Section B Questions no. 17 to 21 are Very Short Answer type questions. Each question carries 2 marks.
- (v) In Section C Questions no. 22 to 28 are Short Answer type questions. Each question carries 3 marks.
- (vi) In Section D Questions no. 29 and 30 are case study-based questions. Each question carries 4 marks.
- (vii) In Section E Questions no. 31 to 33 are Long Answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the Sections except Section A.
- *(ix) Kindly note that there is a separate question paper for Visually Impaired candidates.*
- (x) Use of calculators is **not** allowed.

You may use the following values of physical constants wherever necessary :

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6 \cdot 63 \times 10^{-34} \text{ Js} \\ e &= 1 \cdot 6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8 \cdot 854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \\ \end{split}$$
Mass of electron (m_e) = 9 \cdot 1 \times 10^{-31} kg
Mass of neutron = 1 \cdot 675 \times 10^{-27} kg
Mass of proton = 1 \cdot 673 \times 10^{-27} kg
Avogadro's number = 6 \cdot 023 \times 10^{23} per gram mole
Boltzmann constant = 1 \cdot 38 \times 10^{-23} \text{ JK}^{-1} \end{split}

55/6/1


Page 3 of 31

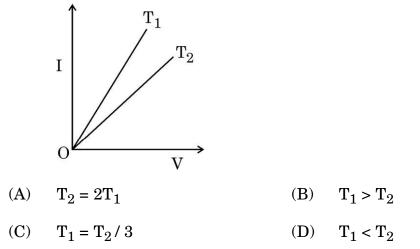

खण्ड क

1. आरेख में किसी तार का दो विभिन्न तापों T_1 और T_2 पर वोल्टता (V) और धारा (I) के बीच ग्राफ दर्शाया गया है। इससे यह निष्कर्ष निकाला जा सकता है कि :

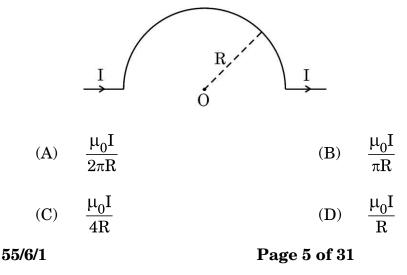
(A)	$\left(\frac{n^2-1}{n^2}\right)$ R	(B)	$\left(\frac{n^2+1}{n^2-1}\right)R$
(C)	$\left(\frac{n^2-1}{n}\right)R$	(D)	$\frac{(n^2+1)R}{n^2}$

3. दिए गए आरेख में बिन्दु O पर चुम्बकीय क्षेत्र का मान है :

55/6/1


Page 4 of 31

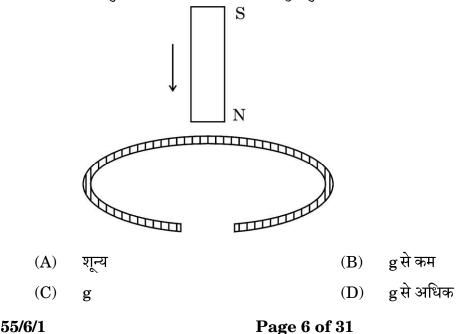
#



SECTION A

1. The figure shows the voltage (V) versus the current (I) graphs for a wire at two temperatures T_1 and T_2 . One can conclude that :

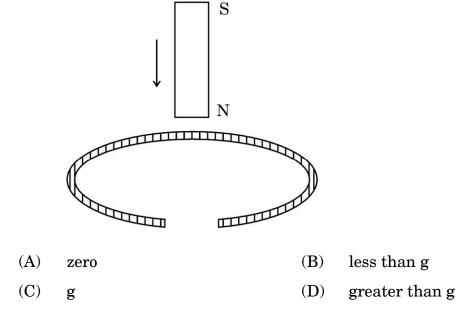
- 2. If R_s and R_p are the equivalent resistances of n resistors, each of value R, in series and parallel combinations respectively, then the value of $(R_s R_p)$ is :
 - (A) $\left(\frac{n^2-1}{n^2}\right)R$ (B) $\left(\frac{n^2+1}{n^2-1}\right)R$ (C) $\left(\frac{n^2-1}{n}\right)R$ (D) $\frac{(n^2+1)R}{n^2}$
- **3.** The value of magnetic field at point O in the given figure is :


P.T.O.

- 4. किसी एकसमान चुम्बकीय क्षेत्र में गति करने के लिए स्वतंत्र कोई प्रतिचुम्बकीय पदार्थ का टुकड़ा :
 - (A) क्षेत्र के अनुदिश गति करता है
 - (B) क्षेत्र के विपरीत गति करता है
 - (C) क्षेत्र के लम्बवत गति करता है
 - (D) किसी भी प्रकार की गति नहीं करता है
- **5.** किसी गैल्वेनोमीटर को वांछनीय परिसर के अमीटर में परिवर्तित किया जा सकता है उसके साथ निम्नलिखित को संयोजित करके :
 - (A) श्रेणी में लघु प्रतिरोध (B) श्रेणी में उच्च प्रतिरोध
 - (C) पार्श्व में लघु प्रतिरोध (D) पार्श्व में उच्च प्रतिरोध

6. कोई प्रोटॉन और कोई α -कण समान वेग \vec{v} से किसी एकसमान चुम्बकीय क्षेत्र \vec{B} में इस प्रकार प्रवेश करते हैं कि $\vec{v} \perp \vec{B}$ हो। तब इनके पथों की त्रिज्याओं का अनुपात होगा :

- (A) 2 (B) $\frac{1}{2}$ (C) $\frac{1}{4}$ (D) 4
- 7. किसी छड़ चुम्बक को ऊर्ध्वाधर रखते हुए किसी ताँबे के वलय, जो आरेख में दर्शाए अनुसार कटा है, के अक्ष के अनुदिश गिराया गया है। इस गिरते हुए चुम्बक का त्वरण है :



#

l	0.05

- **4.** A piece of a diamagnetic material, free to move when placed in a uniform magnetic field :
 - (A) moves along the field
 - (B) moves opposite to the field
 - (C) moves perpendicular to the field
 - $(D) \qquad does \ not \ move \ at \ all$
- **5.** A galvanometer can be converted into an ammeter of desired range by connecting a :
 - (A) small resistance in series (B) large resistance in series
 - (C) small resistance in parallel (D) large resistance in parallel
- 6. A proton and an α -particle enter with the same velocity \vec{v} in a uniform magnetic field \vec{B} such that $\vec{v} \perp \vec{B}$. The ratio of the radii of their paths is :
 - (A) 2 (B) $\frac{1}{2}$ (C) $\frac{1}{4}$ (D) 4
- 7. A vertically held bar magnet is dropped along the axis of a copper ring having a cut as shown in the diagram. The acceleration of the falling magnet is :

55/6/1

Page 7 of 31

P.T.O.

8. कोई ac स्रोत किसी प्रतिरोधक और किसी प्रेरक के श्रेणी संयोजन से संयोजित है। प्रतिरोधक और प्रेरक के सिरों पर वोल्टता क्रमश: 8 V और 6 V है। स्रोत की वोल्टता है:

(A)	10 V	(B)	$12 \mathrm{V}$
(C)	14 V	(D)	16 V

9. दो कलासंबद्ध तरंगें जिनमें प्रत्येक की तीव्रता I_0 है, किसी परदे पर व्यतिकरण पैटर्न उत्पन्न करती हैं। परदे पर प्रकाश की औसत तीव्रता है :

(A)	शून्य	(B)	I_0
(C)	$2I_0$	(D)	$4I_0$

10. किसी पदार्थ का कार्यफलन 2.21 eV है। निम्नलिखित में से कौन-सा इस पदार्थ से फोटोइलेक्ट्रॉन उत्पन्न **नहीं** कर सकता है ?

(A)	लाल प्रकाश	(B)	नीला प्रकाश
(C)	बैंगनी प्रकाश	(D)	हरा प्रकाश

- 11. आवृत्ति 6.0×10^{14} Hz के किसी फ़ोटॉन का संवेग (kg m/s में) होता है :
 - $(A) \qquad 6{\cdot}63\times 10^{-25}$
 - (B) 1.326×10^{-27}
 - $(C) \qquad 2{\cdot}652\times 10^{-26}$
 - $(D) \qquad 3{\cdot}978\times 10^{-24}$
- 12. किसी नाभिक में प्रोटॉन और प्रोटॉन, प्रोटॉन और न्यूट्रॉन तथा न्यूट्रॉन और न्यूट्रॉन के बीच नाभिकीय बल क्रमश: F_{pp}, F_{pn} और F_{nn} हैं। तब :
 - $(A) \qquad \mathbf{F}_{pp} > \mathbf{F}_{pn} > \mathbf{F}_{nn}$
 - $(B) \qquad F_{pn} > F_{nn} > F_{pp}$
 - $(C) \qquad \mathbf{F_{nn}} > \mathbf{F_{pp}} > \mathbf{F_{pn}}$
 - (D) $F_{pp} = F_{pn} = F_{nn}$

Page 8 of 31

55/6/1

8. An ac source is connected to a resistor and an inductor in series. The voltage across the resistor and inductor are 8 V and 6 V respectively. The voltage of the source is :

(A)	10 V	(B)	$12 \mathrm{V}$
(C)	14 V	(D)	16 V

9. Two coherent waves, each of intensity I_0 , produce interference pattern on a screen. The average intensity of light on the screen is :

(A)	zero	(B)	I_0
(C)	$2I_0$	(D)	$4I_0$

10. The work function of a material is 2.21 eV. Which of the following *cannot* produce photoelectrons from it ?

(A)	Red light	(B)	Blue light
-----	-----------	-----	------------

- (C) Violet light (D) Green light
- 11. The momentum (in kg m/s) of a photon of frequency 6.0×10^{14} Hz is :
 - $(A) \qquad 6{\cdot}63\times 10^{-25}$

- $(B) \qquad 1{\cdot}326\times 10^{-27}$
- $(C) \qquad 2{\cdot}652\times 10^{-26}$
- $(D) \qquad 3.978\times 10^{-24}$
- 12. Inside a nucleus, the nuclear forces between proton and proton, proton and neutron, neutron and neutron are F_{pp} , F_{pn} and F_{nn} respectively. Then :
 - $(A) \qquad \mathbf{F}_{pp} > \mathbf{F}_{pn} > \mathbf{F}_{nn}$
 - $(B) \qquad F_{pn} > F_{nn} > F_{pp}$
 - $(C) \qquad \mathbf{F}_{nn} > \mathbf{F}_{pp} > \mathbf{F}_{pn}$
 - (D) $F_{pp} = F_{pn} = F_{nn}$

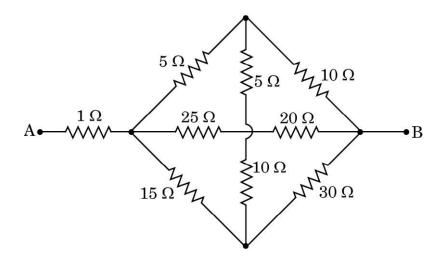
55/6/1

Page 9 of 31

प्रश्न संख्या 13 से 16 अभिकथन (A) और कारण (R) प्रकार के प्रश्न हैं। दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) और कारण (R) दोनों ग़लत हैं।
- 13. अभिकथन (A): किसी परावर्ती दूरदर्शक में प्रतिबिम्ब में वर्ण विपथन नहीं होता है।
 - *कारण (R)* : वर्ण विपथन केवल किसी प्रकाशिक माध्यम से प्रकाश के अपवर्तन के कारण ही होता है।
- **14.** *अभिकथन (A)* : विवर (होल) कोई ऐसा आभासी मुक्त कण है जिस पर प्रभावी धनात्मक इलेक्ट्रॉनिक आवेश होता है।
 - *कारण (R)* : विवर आवश्यक रूप से ऐसा रिक्त स्थान नहीं है जिसे संयोजकता बैण्ड में किसी इलेक्ट्रॉन द्वारा पीछे छोड़ दिया गया है।
- **15.** अभिकथन (A) : जब उच्च परमाणु क्रमांक का कोई धातु का लक्ष्य धीमी गति से गतिमान इलेक्ट्रॉनों को रोकता है तो X-किरणें उत्पन्न होती हैं।
 - कारण (R) : X-किरणें निम्न-ऊर्जा के फ़ोटॉनों से बनती हैं।
- 16. अभिकथन (A): (30 < A < 170) परिसर की द्रव्यमान संख्या के लिए प्रति न्यूक्लिऑन बंधन ऊर्जा वास्तव में नियत होती है।
 - *कारण (R)* : (30 < A < 170) परिसर की द्रव्यमान संख्या के लिए न्यूक्लिऑनों के बीच नाभिकीय बल लघु-परासी नहीं होते हैं।
 - 55/6/1

Page 10 of 31


Questions number 13 to 16 are Assertion (A) and Reason (R) type questions. Two statements are given — one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (A), (B), (C) and (D) as given below.

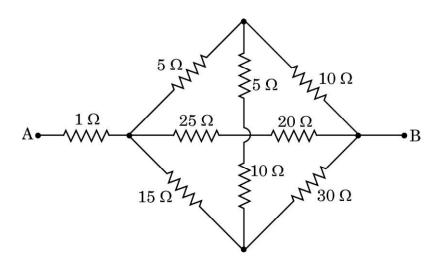
- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- $(D) \qquad Both \ Assertion \ (A) \ and \ Reason \ (R) \ are \ false.$
- **13.** Assertion (A): In a reflecting telescope, the image does not have chromatic aberration.
 - Reason(R): Chromatic aberration occurs only due to refraction of light through an optical medium.
- 14. Assertion (A): A hole is an apparent free particle with effective positive electronic charge.
 - Reason(R): A hole is not necessarily a vacancy left behind by an electron in the valence band.
- **15.** Assertion (A) : X-rays are produced when slow moving electrons are stopped by a metal target of high atomic number.
 - *Reason* (*R*) : X-rays consist of low-energy photons.
- **16.** Assertion (A) : The binding energy per nucleon is practically constant for mass number in the range (30 < A < 170).
 - Reason (R) :Nuclear forces between the nucleons for mass numbers in
the range (30 < A < 170) are not short-range.
 - 55/6/1

खण्ड ख

17. आरेख में दर्शाए गए नेटवर्क के बिन्दु A और B के बीच तुल्य प्रतिरोध ज्ञात कीजिए।

- 18. (क)यंग के द्विझिरी प्रयोग में पर्दे के किसी बिन्दु पर तीव्रता ज्ञात कीजिए, जिस पर व्यतिकरण करती
तरंगों, जिनमें प्रत्येक की तीव्रता I0 है, के बीच पथान्तर (i) $\frac{\lambda}{3}$, तथा (ii) $\frac{\lambda}{2}$ है।2अथवा
 - (ख) वक्रता त्रिज्या 30 cm और अपवर्तनांक 1.5 के काँच से बने किसी उत्तल गोलीय पृष्ठ के सामने 12 cm दूरी पर कोई बिन्दु प्रकाश स्रोत स्थित है। बनने वाले प्रतिबिम्ब की प्रकृति और स्थिति ज्ञात कीजिए।
- 19. $3\cdot 0 \times 10^{14} \text{ Hz}$ आवृत्ति का कोई लेज़र पुन्ज 9 mW की औसत शक्ति उत्पन्न करता है। (i) पुन्ज के फ़ोटॉन की ऊर्जा, तथा (ii) स्रोत द्वारा प्रति सेकण्ड उत्सर्जित फ़ोटॉनों की औसत संख्या ज्ञात कीजिए।

2


2

2

SECTION B

17. Find the equivalent resistance between points A and B for the network shown in the figure.

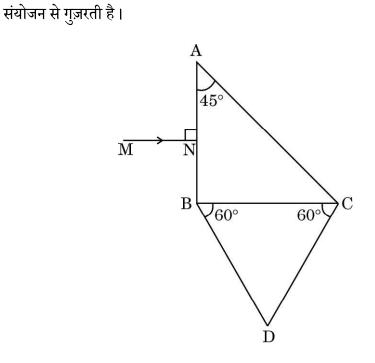
18. (a) Find the intensity at a point on the screen in Young's double slit experiment, at which the interfering waves of intensity I_0 each, have a path difference of (i) $\frac{\lambda}{3}$, and (ii) $\frac{\lambda}{2}$.

OR

- (b) A point source of light in air is kept at a distance of 12 cm in front of a convex spherical surface of glass of refractive index 1.5 and radius of curvature 30 cm. Find the nature and position of the image formed.
- 19. A laser beam of frequency 3.0×10^{14} Hz produces average power of 9 mW. Find (i) the energy of photon of the beam, and (ii) the number of photons emitted per second on an average by the source.

55/6/1

Page 13 of 31


P.T.O.

2

20. कोई समकोणिक समद्विबाहु काँच का प्रिज्म ABC किसी समबाहु त्रिभुजाकार प्रिज्म DBC के सम्पर्क में आरेख में दर्शाए अनुसार रखा है। दोनों प्रिज्म अपवर्तनांक 1.6 के समान काँच के बने हैं। फलक AB पर अभिलम्बवत आपतित किरण MN का वह पथ आरेखित कीजिए जिससे यह किरण इस

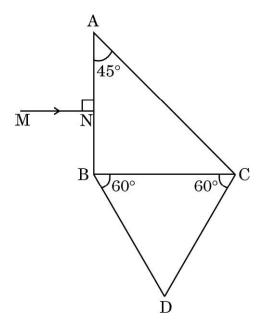
2

21. किसी n-प्रकार के अर्धचालक में कक्ष ताप पर इलेक्ट्रॉन-विवर संयोजन एक सतत प्रक्रिया है। फिर भी इसमें इलेक्ट्रॉन सांद्रता सदैव ही विवर सांद्रता से अधिक होती है। व्याख्या कीजिए।

खण्ड ग

22. किसी सेल के 'वि.वा. बल' (emf) और 'टर्मिनल वोल्टता' के बीच क्या अंतर है ? दो सेल जिनके वि.वा. बल (emf) E_1 और E_2 हैं तथा आन्तरिक प्रतिरोध क्रमश: r_1 और r_2 हैं पार्श्व में संयोजित हैं । तुल्य सेल के वि.वा. बल (emf) और आन्तरिक प्रतिरोध के लिए व्यंजक व्युत्पन्न कीजिए।

Page 14 of 31


3

2

20. A right angled isosceles glass prism ABC is kept in contact with an equilateral triangular prism DBC as shown in the figure. Both prisms are made of the same glass of refractive index 1.6. Trace the path of the ray MN incident normally on face AB as it passes through the combination.

21. In an n-type semiconductor electron-hole combination is a continuous process at room temperature. Yet the electron concentration is always greater than the hole concentration in it. Explain.

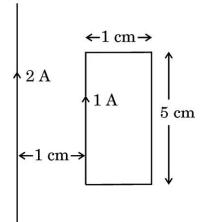
SECTION C

22. What is the difference between 'emf' and 'terminal voltage' of a cell ?

Two cells of emfs E_1 and E_2 and internal resistances r_1 and r_2 are connected in parallel. Derive an expression for the emf and internal resistance of the equivalent cell.

55/6/1

Page 15 of 31


Р.Т.О.

3

23. किसी आयताकार पाश से 1 A धारा प्रवाहित हो रही है। आरेख में दर्शाए अनुसार कोई सीधा लम्बा तार जिससे 2 A धारा प्रवाहित हो रही है पाश के ही तल में उसके समीप रखा है।

ज्ञात कीजिए :

3

#

- (i) पाश पर कार्यरत बल-आघूर्ण, तथा
- (ii) पाश पर लगे नेट बल का परिमाण और उसकी दिशा।
- 24. (क) लेन्ज़ का नियम लिखिए। लम्बाई L की कोई छड़ MN अपनी लम्बाई के लम्बवत तथा सिरे M से गुजरने वाले अक्ष के परित: किसी एकसमान चुम्बकीय क्षेत्र B में, जो छड़ के अक्ष के समान्तर है, किसी नियत कोणीय वेग ω से घूर्णन कराई गई है। छड़ के सिरों के बीच प्रेरित वि.वा. बल (emf) के लिए व्यंजक प्राप्त कीजिए।

अथवा

- (ख) किसी कुण्डली के 'स्व-प्रेरकत्व' की परिभाषा लिखिए। लम्बाई l, अनुप्रस्थ-काट क्षेत्रफल A तथा प्रति एकांक लम्बाई फेरों की संख्या n की किसी लम्बी परिनालिका के स्व-प्रेरकत्व के लिए व्यंजक व्युत्पन्न कीजिए।
- 3

3

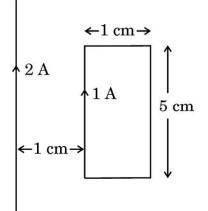
25. निम्नलिखित के लिए उपयोग की जाने वाली विद्युत-चुम्बकीय तरंगों के नाम लिखिए :

(i) रेडार, (ii) नेत्र शल्यता, तथा (iii) चिकित्सा में नैदानिक साधन के रूप में। इनके तरंगदैर्ध्य परिसर भी लिखिए।

26. किसी अवतल दर्पण द्वारा उत्पन्न किसी बिम्ब का वास्तविक, उल्टा तथा विवर्धित प्रतिबिम्ब बनना दर्शाने के लिए किरण आरेख खींचिए और इस प्रकार दर्पण सूत्र प्राप्त कीजिए।

55/6/1

Page 16 of 31


3

 \mathcal{B}

23. A rectangular loop carries a current of 1 A. A straight long wire carrying 2 A current is kept near the loop in the same plane as shown in the figure.

Find :

- (i) the torque acting on the loop, and
- (ii) the magnitude and direction of the net force on the loop.
- 24. (a) State Lenz's law. A rod MN of length L is rotated about an axis passing through its end M perpendicular to its length, with a constant angular velocity ω in a uniform magnetic field \overrightarrow{B} parallel to the axis. Obtain an expression for emf induced between its ends.

OR

- (b) Define 'self-inductance' of a coil. Derive an expression for self-inductance of a long solenoid of cross-sectional area A and length *l*, having n turns per unit length.
- 25. Name the electromagnetic wave used (i) in radar, (ii) in eye surgery and (iii) as diagnostic tool in medicine. Write their wavelength range also.
- **26.** Draw a ray diagram showing the image formation when a concave mirror produces a real, inverted and magnified image of an object and hence obtain the mirror formula.

55/6/1

Page 17 of 31

P.T.O.

#

 $\boldsymbol{3}$

3

3

 $\boldsymbol{3}$

 $\mathcal{3}$

- 27. हाइड्रोजन परमाणु के बोर मॉडल के अनुसार किसी इलेक्ट्रॉन की वर्तुल कक्षा में गति बनाए रखने के लिए उसे आवश्यक बल किस प्रकार प्राप्त होता है ? हाइड्रोजन परमाणु में त्रिज्या r की वर्तुल कक्षा में गतिमान किसी इलेक्ट्रॉन की कुल ऊर्जा के लिए व्यंजक व्युत्पन्न कीजिए। इस व्यंजक में ऋणात्मक चिह्न का महत्त्व दीजिए।
- 28. (क) 'D-T अभिक्रिया' (ड्यूटेरियम-ट्रीटियम अभिक्रिया) पर विचार कीजिए । किसी तापनाभिकीय संलयन रिएक्टर में निम्नलिखित नाभिकीय अभिक्रिया होती है :

$${}^{2}_{1}H + {}^{3}_{1}H \longrightarrow {}^{4}_{2}He + {}^{1}_{0}n + Q$$

इस अभिक्रिया में मुक्त ऊर्जा की मात्रा ज्ञात कीजिए।
दिया गया है :
 $m {2 \choose 1}H = 2 \cdot 014102 u$
 $m {}^{3}_{1}H = 3 \cdot 016049 u$
 $m {}^{4}_{2}He = 4 \cdot 002603 u$

$$\mathbf{m} \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \end{pmatrix} = \mathbf{1} \cdot \mathbf{008665} \ \mathbf{u}$$

 $1~\mathrm{u}=931~\mathrm{MeV/c}^2$

(ख) यह दर्शाइए कि नाभिकीय घनत्व द्रव्यमान संख्या पर निर्भर नहीं करता है।

3

55/6/1

 \mathcal{B}

- 27. How is the necessary force provided to an electron to keep it moving in a circular orbit according to Bohr model of hydrogen atom ? Derive an expression for the total energy of an electron moving in an orbit of radius r in hydrogen atom. Give the significance of negative sign in this expression.
- 28. (a) Consider the so-called 'D-T reaction' (Deuterium-Tritium reaction).
 In a thermonuclear fusion reactor, the following nuclear reaction occurs :

$$^{2}_{1}H + ^{3}_{1}H \longrightarrow ^{4}_{2}He + ^{1}_{0}n + Q$$

Find the amount of energy released in the reaction.

Given :

$$m\binom{2}{1}H = 2.014102 u$$

$$m\binom{3}{1}H = 3.016049 u$$

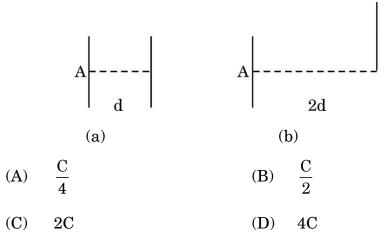
$$m\binom{4}{2}He = 4.002603 u$$

$$m\binom{1}{0}n = 1.008665 u$$

$$1 u = 931 MeV/c^{2}$$

(b) Show that the nuclear density is independent of mass number. 3

55/6/1


खण्ड घ

प्रश्न संख्या **29** तथा **30** केस अध्ययन-आधारित प्रश्न हैं। निम्नलिखित अनुच्छेदों को पढ़ कर नीचे दिए गए प्रश्नों के उत्तर दीजिए।

29. कोई संधारित्र विद्युत रोधी द्वारा पृथक दो चालकों का एक निकाय होता है। व्यवहार में, दो चालकों पर आवेश Q और – Q होते हैं तथा उनमें विभवान्तर V = V₁ – V₂ होता है। अनुपात $\frac{Q}{V}$ एक नियतांक है जिसे C द्वारा व्यक्त किया जाता है और इसे संधारित्र की धारिता कहते हैं। धारिता Q और V पर निर्भर नहीं करती है। धारिता C केवल दो चालकों के निकाय के ज्यामितीय विन्यास (आकार, आकृति, पृथकन) तथा दोनों चालकों को पृथक करने वाले माध्यम पर निर्भर करती है। जब किसी समान्तर पट्टिका संधारित्र को आवेशित किया जाता है, तो विद्युत-क्षेत्र E_0 दो पट्टिकाओं के बीच स्थानीकृत हो जाता है तथा समस्त क्षेत्र में एकसमान होता है, जो विद्युत-क्षेत्र E_0 दो पट्टिकाओं के बीच स्थानीकृत हो जाता है तथा समस्त क्षेत्र में एकसमान होता है। जब किसी परावैद्युत की किसी पट्टिका को आवेशित पट्टिकाओं (आवेश घनत्व σ) के बीच रख दिया जाता है तो क्षेत्र द्वारा समस्त परावैद्युत ध्रुवित हो जाता है जिसके फलस्वरूप पट्टिका के फलकों पर विजातीय आवेश प्रकट हो जाते हैं जिसके पृष्ठीय आवेश घनत्व का परिमाण σ_p होता है। रैखिक परावैद्युत के लिए σ_p , E_0 के आनुपातिक होता है। परावैद्युत रखने से विद्युत-क्षेत्र परिवर्तित होता है जिस के प्रयवर्तित होता है जिससे संधारित्र की धारिता परिवर्तित होती है और इस प्रकार संधारित्र में संचित ऊर्जा परिवर्तित होता है जिससे संधारित्र की धारिता परिवर्तित होती है और इस प्रकार संधारित्र में संचित ऊर्जा परिवर्तित होता है। जाती है।

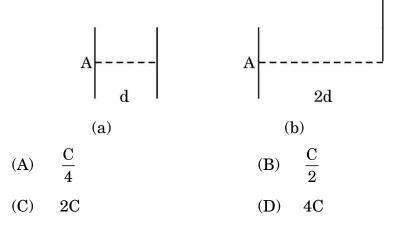
प्रतिरोधकों की भाँति संधारित्रों को भी श्रेणी में अथवा पार्श्व में अथवा श्रेणी और पार्श्व के संयुक्त संयोजन में संयोजित किया जा सकता है।

 (i) आरेख (a) में दर्शाए गए वायु से भरे पट्टिका क्षेत्रफल A तथा पट्टिका पृथकन d के धारिता C के किसी संधारित्र पर विचार कीजिए । यदि पट्टिकाओं के बीच की दूरी को बढ़ाकर 2d कर दिया जाए तथा आरेख (b) में दर्शाए अनुसार एक पट्टिका को स्थानान्तरित कर दिया जाए, तो अब नए निकाय की धारिता होगी :

55/6/1

Page 20 of 31

#


SECTION D

Questions number **29** and **30** are case study-based questions. Read the following paragraphs and answer the questions that follow.

29. A capacitor is a system of two conductors separated by an insulator. In practice, the two conductors have charges Q and - Q with potential difference $V = V_1 - V_2$ between them. The ratio $\frac{Q}{V}$ is a constant, denoted by C and is called the capacitance of the capacitor. It is independent of Q or V. It depends only on the geometrical configuration (shape, size, separation) of the two conductors and the medium separating the conductors. When a parallel plate capacitor is charged, the electric field E_0 is localised between the plates and is uniform throughout. When a slab of a dielectric is inserted between the charged plates (charge density σ), the dielectric is polarised by the field. Consequently opposite charges appear on the faces of the slab, near the plates, with surface charge density of magnitude $\sigma_{p}.$ For a linear dielectric σ_p is proportional to E_0 . Introduction of a dielectric changes the electric field, and hence, the capacitance of a capacitor, and hence, the energy stored in the capacitor.

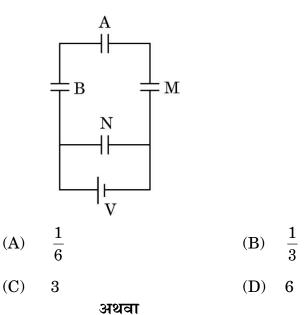
Like resistors, capacitors can also be arranged in series or in parallel or in a combination of series and parallel.

(i) Consider a capacitor of capacitance C, with plate area A and plate separation d, filled with air [Fig. (a)]. The distance between the plates is increased to 2d and one of the plates is shifted as shown in Fig. (b). The capacitance of the new system now is :

55/6/1

Page 21 of 31

1


1

1

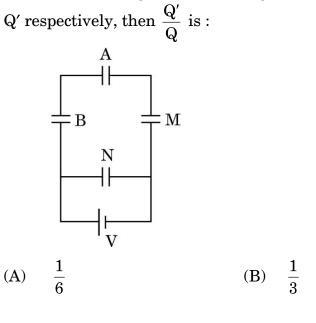
 (ii) किसी समान्तर पट्टिका संधारित्र [पट्टिका क्षेत्रफल A और पट्टिका पृथकन d (> d₁)] की आवेशित पट्टिकाओं (आवेश घनत्व σ) के बीच परावैद्युतांक K की कोई रैखिक परावैद्युत की पट्टिका (क्षेत्रफल A और मोटाई d₁) रख दी गई है और इस पट्टिका के फलकों पर परिमाण में σ_p आवेश घनत्व के विजातीय आवेश प्रकट हो गए हैं। परावैद्युतांक K का मान होगा :

(A)
$$\frac{\sigma + \sigma_p}{\sigma}$$
 (B) $\frac{\sigma}{\sigma - \sigma_p}$
(C) $\frac{\sigma + \sigma_p}{\sigma_p}$ (D) $\frac{\sigma}{\sigma_p}$

- (iii) आवेशों Q और Q के वायु से भरे किसी समान्तर पट्टिका संधारित्र की पट्टिकाओं के बीच कोई विद्युत-क्षेत्र E स्थापित किया गया है। पट्टिकाओं के बीच परिबद्ध स्थान का आयतन V है। इस संधारित्र में संचित ऊर्जा है:
 - (A) $\frac{1}{2} \varepsilon_0 E^2$ (B) $\varepsilon_0 Q^2 E$ (C) $\frac{1}{2} \varepsilon_0 E^2 V$ (D) $\varepsilon_0 E Q V$
- (iv) (क) आरेख में दर्शाए अनुसार तीन संधारित्रों A, B और M जिनमें प्रत्येक की धारिता C है, को धारिता 2C के किसी संधारित्र N और किसी बैटरी से संयोजित किया गया
 - है। यदि ${f A}$ और ${f N}$ पर क्रमश: ${f Q}$ और ${f Q}'$ आवेश हैं, तो $\displaystyle{{f Q}'\overf Q}$ है :

Page 22 of 31

1


1

(ii) A slab (area A and thickness d_1) of a linear dielectric of dielectric constant K is inserted between charged plates (charge density σ) of a parallel plate capacitor [plate area A and plate separation $d (> d_1)$] and opposite charges with charge density of magnitude σ_p appear on the faces of the slab. The dielectric constant K is given by : 1

(A)
$$\frac{\sigma + \sigma_p}{\sigma}$$
 (B) $\frac{\sigma}{\sigma - \sigma_p}$
(C) $\frac{\sigma + \sigma_p}{\sigma_p}$ (D) $\frac{\sigma}{\sigma_p}$

- (iii) An electric field E is established between the plates of an air filled parallel plate capacitor, with charges Q and Q. V is the volume of the space enclosed between the plates. The energy stored in the capacitor is :
 - (A) $\frac{1}{2} \varepsilon_0 E^2$ (B) $\varepsilon_0 Q^2 E$ (C) $\frac{1}{2} \varepsilon_0 E^2 V$ (D) $\varepsilon_0 E Q V$
- (iv) (a) Three capacitors A, B and M, each of capacitance C are connected to a capacitor N of capacitance 2C and a battery as shown in the figure. If the charges on A and N are Q and

(C) 3 (D) OR

55/6/1

Page 23 of 31

(ख) पट्टिका क्षेत्रफल A तथा पट्टिका पृथकन d के किसी समान्तर पट्टिका संधारित्र में परावैद्युतांक K की कोई पट्टिका (क्षेत्रफल A और मोटाई $\frac{d}{2}$) रख दी गई है। यदि संधारित्र की परावैद्युत के साथ और परावैद्युत के बिना धारिता क्रमश: C और C₀ है,

तो
$$\frac{C}{C_0}$$
 है: 1
(A) $\frac{K+1}{2K}$ (B) $\frac{2K}{K+1}$

(C) $\frac{K}{K-1}$ (D) $\frac{K-1}{K}$ अपद्रव्यी अर्धचालकों को शुद्ध अथवा नैज अर्धचालकों को उपयुक्त अशुद्धि से मादित करके बनाया

30. अपद्रव्यी अर्धचालकों को शुद्ध अथवा नैज अर्धचालकों को उपयुक्त अशुद्धि से मादित करके बनाया जाता है । Si और Ge को मादित करने के लिए दो प्रकार के मादकों का उपयोग किया जाता है और इनका उपयोग करके p-प्रकार और n-प्रकार के अर्धचालक प्राप्त किए जा सकते हैं । p-n संधि बहुत सी अर्धचालक युक्तियों की मूल इकाई है । किसी p-n संधि के निर्माण के समय दो महत्त्वपूर्ण प्रक्रियाएँ होती हैं – विसरण तथा अपवाह । जब कोई इस प्रकार की संधि निर्मित होती है, तो कोई 'हासी स्तर' उत्पन्न हो जाता है जो निश्चल आयन-क्रोडों से बना होता है । यह किसी संधि रोधिका विभव के लिए उत्तरदायी होता है । हासी स्तर की चौड़ाई तथा रोधिका विभव की ऊँचाई संधि के अग्रबायसित अथवा पश्चबायसित होने पर परिवर्तित हो जाती है । कोई अर्धचालक डायोड आधार रूप से कोई p-n संधि होती है जिसके सिरों पर बाह्य वोल्टता अनुप्रयुक्त करने के लिए धातु के संपर्क प्रदान किए जाते है । डायोडों का उपयोग करके प्रत्यावर्ती वोल्टताओं (ac voltages) को दिष्टकृत किया जा सकता है ।

- (i) निम्नलिखित में से कौन-सा Ge के लिए दाता अशुद्धि परमाणु है ?
 - (A) बोरॉन (B) ऐन्टिमनी
 - (C) ऐलुमिनियम (D) इंडियम
- (ii) जब कोई पंचसंयोजी परमाणु Si के क्रिस्टलीय जालक में किसी परमाणु की स्थिति घेर लेता है तो इसके चार इलेक्ट्रॉन सिलिकॉन के चार पड़ोसियों के साथ सहसंयोजी आबन्ध बना लेते हैं जबकि पाँचवाँ इलेक्ट्रॉन पैतृक परमाणु से बँधा रहता है। इस इलेक्ट्रॉन को मुक्त करने के लिए आवश्यक ऊर्जा है लगभग:
 - (A) 0.5 eV (B) 0.1 eV
 - (C) 0.05 eV (D) 0.01 eV

Page 24 of 31

55/6/1

1

1

1

(b) A slab (area A and thickness $\frac{d}{2}$) of dielectric constant K is inserted in a parallel plate capacitor of plate area A and plate separation d. If C and C₀ are the capacitances of the capacitors with and without the dielectric, then $\frac{C}{C_0}$ is :

(A)
$$\frac{K+1}{2K}$$
 (B) $\frac{2K}{K+1}$
(C) $\frac{K}{K-1}$ (D) $\frac{K-1}{K}$

- **30.** Extrinsic semiconductors are made by doping pure or intrinsic semiconductors with suitable impurity. There are two type of dopants used in doping, Si or Ge, and using them p-type and n-type semiconductors can be obtained. A p-n junction is the basic building block of many semiconductor devices. Two important processes occur during the formation of a p-n junction : diffusion and drift. When such a junction is formed, a 'depletion layer' is created consisting of immobile ion-cores. This is responsible for a junction potential barrier. The width of a depletion layer and the height of potential barrier changes when a junction is forward-biased or reverse-biased. A semiconductor diode is basically a p-n junction with metallic contacts provided at the ends for application of an external voltage. Using diodes, alternating voltages can be rectified.
 - (i) Which of the following is a donor impurity atom for Ge ?
 - (A) Boron (B) Antimony
 - (C) Aluminium (D) Indium
 - When a pentavalent atom occupies the position of an atom in the crystal lattice of Si, four of its electrons form covalent bonds with four silicon neighbours, while the fifth remains bound to the parent atom. The energy required to set this electron free is about :
 - (A) 0.5 eV (B) 0.1 eV
 - (C) 0.05 eV (D) 0.01 eV

55/6/1

Page 25 of 31

				#	
	(iii)	कि सी :	p-n संधि के निर्मित होते समय :	1	
		(A)	${f n}$ -फलक पर ऋणावेश की परत तथा ${f p}$ -फलक पर धनावेश की परत प्रकट होती है।		
		(B)	${f n}$ -फलक पर धनावेश की परत तथा ${f p}$ -फलक पर ऋणावेश की परत प्रकट होती है।		
		(C)	संधि के ${ m p}$ -फलक के इलेक्ट्रॉन आरम्भ में ${ m n}$ -फलक की ओर गति करते हैं।		
		(D)	आरम्भ में विसरण धारा निम्न तथा अपवाह धारा उच्च होती है।		
	(iv)	(क)	p-n संधि के पश्चदिशिक बायसन में :	1	
			 (A) अपवाह धारा कुछ mA कोटि की होती है। (B) अधिमनंग अन्यप्रसन को नगर कर एक वस्ती क्षेत्र के पियें पर को स है। 		
			 (B) अधिकांश अनुप्रयुक्त वोल्टता का पात ह्रासी क्षेत्र के सिरों पर होता है। (C) ह्रासी क्षेत्र की चौड़ाई घटती है। 		
			(D) अनुप्रयुक्त वोल्टता में वृद्धि के साथ धारा में वृद्धि होती है।		
			अथवा		
		(ख)	निवेशी आवृत्ति के रूप में 50 Hz के साथ पूर्ण-तरंग दिष्टकारी की निर्गत आवृत्ति होती है :	1	
			(A) 25 Hz (B) 50 Hz		
			(C) 100 Hz (D) 200 Hz		
			खण्ड ङ		
81.	(क)	(i)	किसी ac जनित्र की कार्यविधि का सिद्धांत लिखिए। इसका नामांकित आरेख खींचकर इसकी कार्यविधि लिखिए।		
		(ii)	किसी ac स्रोत v = 140 $\sin (100\pi)$ t V से श्रेणी में 400 Ω का प्रतिरोधक,		
			$iggl({5\over\pi}iggr){ m H}$ का प्रेरक तथा $iggl({50\over\pi}iggr)\mu{ m F}$ का संधारित्र संयोजित है । इन तीनों परिपथ		
			अवयवों के सिरों पर ${ m rms}$ वोल्टताएँ ज्ञात कीजिए । इन वोल्टताओं का बीजीय		
			योगफल स्रोत की ${ m rms}$ वोल्टता से अधिक होता है। व्याख्या कीजिए।	5	
			अथवा		
	(ख)	(i)	किसी ट्रान्सफॉर्मर की कार्यविधि का सिद्धांत लिखिए। नामांकित आरेख की सहायता से किसी उच्चायी ट्रान्सफॉर्मर की कार्यविधि की व्याख्या कीजिए।		

55/6/1

31.

Page 26 of 31

		#	ŧ
(iii	i) Du	uring formation of a p-n junction :	1
	(A		
	(B) a layer of positive charge on n-side and a layer of negative charge on p-side appear.	
	(C) the electrons on p-side of the junction move to n-side initially.	
	(D) initially diffusion current is small and drift current is large.	
(iv	r) (a)	In reverse-biased p-n junction :	1
		(A) the drift current is of the order of few mA.	
		(B) the applied voltage mostly drops across the depletion region.	
		(C) the depletion region width decreases.	
		(D) the current increases with increase in applied voltage.	
		OR	
	(b)	The output frequency of a full-wave rectifier with 50 Hz as	
		input frequency is :	1
		(A) 25 Hz (B) 50 Hz	

 $(C) 100 \ Hz (D) 200 \ Hz$

SECTION E

- **31.** (a) (i) Write the principle of working of an ac generator. Draw its labelled diagram and explain its working.
 - (ii) A resistor of 400 Ω , an inductor of $\left(\frac{5}{\pi}\right)$ H and a capacitor of $\left(\frac{50}{\pi}\right)\mu$ F are joined in series across an ac source $v = 140 \sin (100\pi)t$ V. Find the rms voltages across these three circuit elements. The algebraic sum of these voltages is more than the rms voltage of source. Explain.

OR

(b) (i) Write the principle of working of a transformer. With the help of a labelled diagram, explain the working of a step-up transformer.

55/6/1

Page 27 of 31

 (ii) किसी ऐसे आदर्श ट्रान्सफॉर्मर की अभिकल्पना 50 V को 250 V में परिवर्तित करने के लिए की गई है। यह ट्रान्सफॉर्मर उस ac स्रोत से 200 W शक्ति लेता है जिसकी तात्कालिक वोल्टता v_i = 20 sin (100π)t V है।

ज्ञात कीजिए :

- (I) निवेशी धारा का rms मान।
- (II) तात्कालिक निर्गत वोल्टता के लिए व्यंजक।
- (III) तात्कालिक निर्गत धारा के लिए व्यंजक।
- 32. (क) (i) किसी संयुक्त सूक्ष्मदर्शी द्वारा प्रतिबिम्ब निर्माण दर्शाने के लिए किरण आरेख खींचिए । इस सूक्ष्मदर्शी के कुल आवर्धन के लिए व्यंजक प्राप्त कीजिए जिसमें अंतिम प्रतिबिम्ब अनन्त पर बनता है ।
 - (ii) किसी संयुक्त सूक्ष्मदर्शी के 1.25 cm फोकस दूरी के अभिदृश्यक से 1.5 cm दूरी पर कोई बिम्ब स्थित है। नेत्रिका की फोकस दूरी 5 cm है। अंतिम प्रतिबिम्ब अनन्त पर बनता है। अभिदृश्यक और नेत्रिका के बीच की दूरी परिकलित कीजिए।

अथवा

- (ख) (i) हाइगेन्स सिद्धांत का उपयोग करके वायु और काँच के बीच के समतल अन्तराफलक पर वायु में संचरण करते किसी समतल तरंगाग्र के अपवर्तन की व्याख्या कीजिए। इस प्रकार स्नेल के नियम का सत्यापन कीजिए।
 - (ii) दर्पण सूत्र का उपयोग करके यह निगमित कीजिए कि किसी उत्तल दर्पण के सामने रखे किसी बिम्ब का दर्पण द्वारा सदैव ही आभासी प्रतिबिम्ब बनता है।
- **33.** (क) (i) किसी प्रदेश में विद्युत-क्षेत्र को $\overrightarrow{E} = 40x$ i N/C द्वारा व्यक्त किया गया है। किसी एकांक धनावेश को बिन्दु (0, 3m) से बिन्दु (5m, 0) तक ले जाने में किया गया कार्य ज्ञात कीजिए।
 - (ii) कोई आवेश Q, त्रिज्या r और R (> r) के दो संकेन्द्री खोखले गोलों पर इस प्रकार वितरित है कि उनके पृष्ठीय आवेश घनत्व समान हैं। इन गोलों के उभयनिष्ठ केन्द्र पर :
 - (I) विद्युत-क्षेत्र, तथा
 - (II) विभव ज्ञात कीजिए।

अथवा

55/6/1

Page 28 of 31

5

5

5

- (ii) An ideal transformer is designed to convert 50 V into 250 V. It draws 200 W power from an ac source whose instantaneous voltage is given by $v_i = 20 \sin (100\pi)t V$. Find :
 - (I) rms value of input current.
 - (II) expression for instantaneous output voltage.
 - (III) expression for instantaneous output current.

5

5

5

- **32.** (a) (i) Draw a ray diagram to show the image formation by a compound microscope. Obtain the expression for the total magnification of the microscope when the final image is formed at infinity.
 - (ii) In a compound microscope, an object is placed at a distance of 1.5 cm from the objective of focal length 1.25 cm. The eyepiece has a focal length of 5 cm. The final image is formed at infinity. Calculate the distance between the objective and the eyepiece.

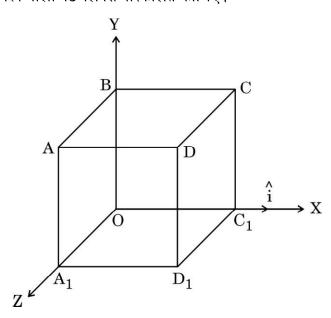
OR

- (b) (i) Using Huygens' principle, explain the refraction of a plane wavefront, propagating in air, at a plane interface between air and glass. Hence verify Snell's law.
 - (ii) Use mirror formula to deduce that a convex mirror always produces a virtual image of an object kept in front of it.
- **33.** (a) (i) The electric field in a region is given by $\vec{E} = 40x \ \hat{i}$ N/C. Find the amount of work done in taking a unit positive charge from a point (0, 3m) to the point (5m, 0).
 - (ii) A charge Q is distributed over two concentric hollow spheres of radii r and R (> r) such that their surface charge densities are equal. Find :
 - (I) the electric field, and
 - (II) the potential

at their common centre.

OR

Page 29 of 31

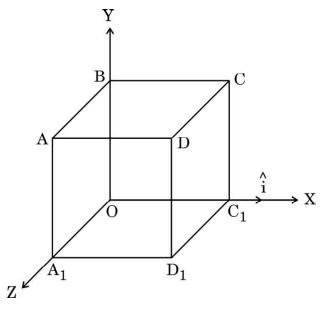

5

- (ख) (i) द्विध्रुव आघूर्ण p → के किसी द्विध्रुव के कारण इसके निरक्षीय समतल के किसी बिन्दु
 पर विद्युत-क्षेत्र E → के लिए व्यंजक प्राप्त कीजिए और इसकी दिशा निर्दिष्ट कीजिए।
 इस प्रकार :
 - (I) इस द्विध्रुव के केन्द्र (r = 0) पर, तथा
 - (II) किसी बिन्दु r >> a पर

विद्युत-क्षेत्र का मान ज्ञात कीजिए, जहाँ 2a द्विध्रुव की लंबाई है।

(ii) किसी प्रदेश में, जिसमें भुजा L का कोई घन आरेख में दर्शाए अनुसार स्थित है कोई विद्युत-क्षेत्र → = (10x + 5)¹ N/C विद्यमान है, यहाँ x और L मीटर में हैं। इस घन से गुजरने वाला नेट फ्लक्स परिकलित कीजिए।

5



(b) (i) Obtain an expression for the electric field \overrightarrow{E} due to a dipole of dipole moment \overrightarrow{p} at a point on its equatorial plane and specify its direction. Hence, find the value of electric field :

- (I) at the centre of the dipole (r = 0), and
- (II) at a point r >> a,

where 2a is the length of the dipole.

(ii) An electric field $\vec{E} = (10x + 5)\hat{i}$ N/C exists in a region in which a cube of side L is kept as shown in the figure. Here x and L are in metres. Calculate the net flux through the cube.

