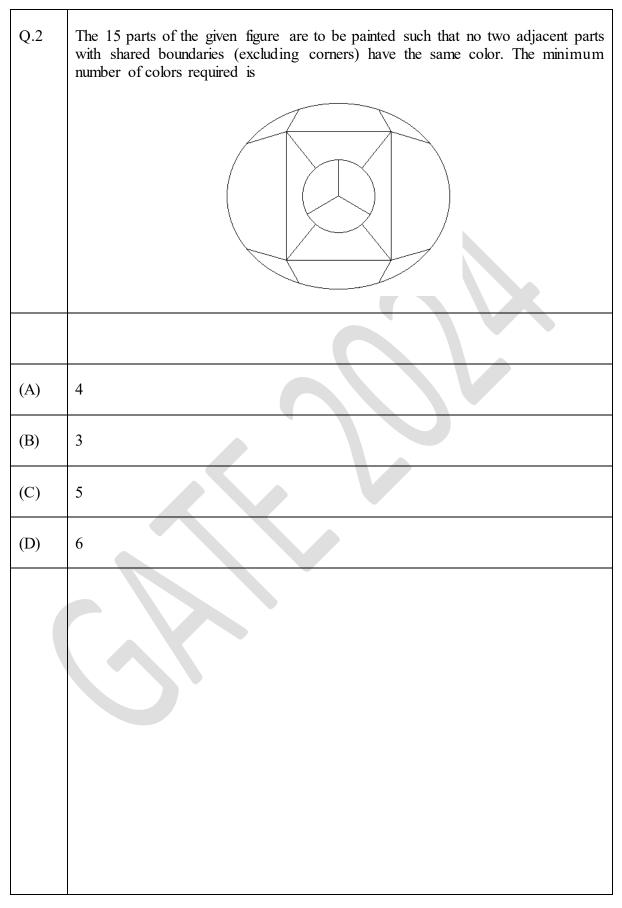


click to campus

GATE 2024 Data Science and Artificial Intelligence (DA) Question Paper

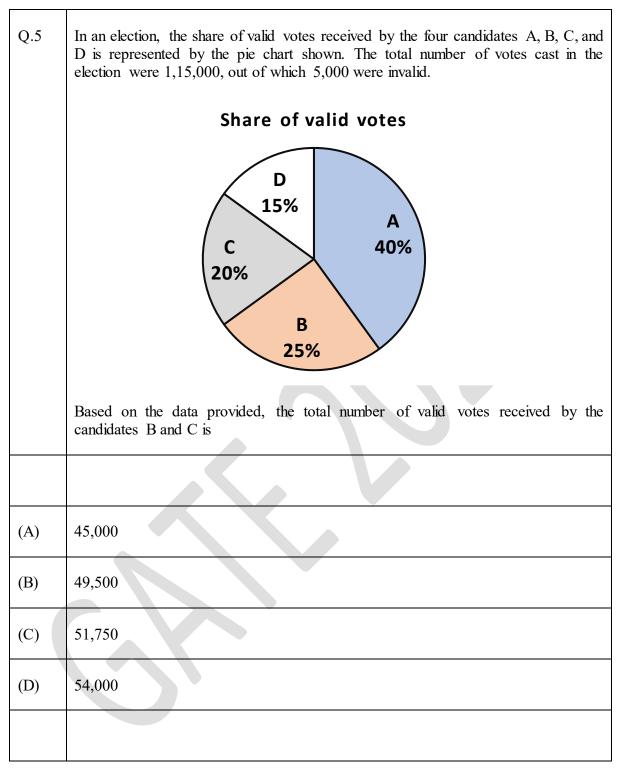
Graduate Aptitude Test in Engineering (GATE)

Download more GATE Previous Year Question Papers: Click Here


General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

Q.1	If ' \rightarrow ' denotes increasing order of intensity, then the meaning of the words
	[sick \rightarrow infirm \rightarrow moribund] is analogous to [silly \rightarrow \rightarrow daft].
	Which one of the given options is appropriate to fill the blank?
(A)	frown
(B)	fawn
(C)	vein
(D)	vain


Data Science and Artificial Intelligence (DA)

Q.3	How many 4-digit positive integers divisible by 3 can be formed using only the digits $\{1, 3, 4, 6, 7\}$, such that no digit appears more than once in a number?
(A)	24
(B)	48
(C)	72
(D)	12
Q.4	The sum of the following infinite series is
	$2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{8} + \frac{1}{9} + \frac{1}{16} + \frac{1}{27} + \cdots$
(A)	11/3
(B)	7/2
(C)	13/4
(D)	9/2

Data Science and Artificial Intelligence (DA)

Q.6 - Q.10 Carry TWO marks Each

Q.6	Thousands of years ago, some people began dairy farming. This coincided with a number of mutations in a particular gene that resulted in these people developing the ability to digest dairy milk.				
	Based on the given passage, which of the following can be inferred?				
(A)	All human beings can digest dairy milk.				
(B)	No human being can digest dairy milk.				
(C)	Digestion of dairy milk is essential for human beings.				
(D)	In human beings, digestion of dairy milk resulted from a mutated gene.				
Q.7	The probability of a boy or a girl being born is 1/2. For a family having only three children, what is the probability of having two girls and one boy?				
(A)	3/8				
(B)	1/8				
(C)	1/4				
(D)	1/2				

Q.8					nd C. The amounts	they
	mvest		mutual funds are g	iven in the table.		
			Mutual fund A	Mutual fund B	Mutual fund C	
		Person 1	₹10,000	₹20,000	₹20,000	
		Person 2	₹20,000	₹15,000	₹15,000	
	Perso	on 2. The annual ra		mutual funds B an	gets is ₹500 more nd C is 15% each. V	
(A)	7.5%					
(B)	10%					
(C)	15%					
(D)	20%					

Q.9	Three different views of a dice are shown in the figure below.
	5 4 2 4 6 3 6
	The piece of paper that can be folded to make this dice is
(A)	5 1 4 6 2 3
(B)	5 1 4 2 6 3
(C)	5 1 3 2 4 6
(D)	5 1 4 6 3 2

Q.10 Visualize two identical right circular cones such that one is inverted over the other and they share a common circular base. If a cutting plane passes through the vertices of the assembled cones, what shape does the outer boundary of the resulting cross-section make?
(A) A rhombus
(B) A triangle
(C) An ellipse
(D) A hexagon

Q.11 – Q.35 Carry ONE mark Each

Q.11	Consider the following statements:		
	 (i) The mean and variance of a Poisson random variable are equal. (ii) For a standard normal random variable, the mean is zero and the variance is one. 		
	Which ONE of the following options is correct ?		
(A)	Both (i) and (ii) are true		
(B)	(i) is true and (ii) is false		
(C)	(ii) is true and (i) is false		
(D)	Both (i) and (ii) are false		

Q.12	Three fair coins are tossed independently. T is the event that two or more tosses result in heads. S is the event that two or more tosses result in tails. What is the probability of the event $T \cap S$?
(A)	0
(B)	0.5
(C)	0.25
(D)	1

Q.13	Consider the matrix $M = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$. Which ONE of the following statements is TRUE ?
(A)	The eigenvalues of M are non-negative and real.
(B)	The eigenvalues of M are complex conjugate pairs.
(C)	One eigenvalue of M is positive and real, and another eigenvalue of M is zero.
(D)	One eigenvalue of M is non-negative and real, and another eigenvalue of M is negative and real.

Q.14	Consider performing depth-first search (DFS) on an undirected and unweighted graph G starting at vertex s. For any vertex u in G, $d[u]$ is the length of the shortest path from s to u. Let (u, v) be an edge in G such that $d[u] < d[v]$. If the edge (u, v) is explored first in the direction from u to v during the above DFS, then (u, v) becomes a edge.
(A)	tree
(B)	cross
(C)	back
(D)	gray

Q.15	For any twice differentiable function $f: \mathbb{R} \to \mathbb{R}$, if at some $x^* \in \mathbb{R}$, $f'(x^*) = 0$ and $f''(x^*) > 0$, then the function f necessarily has a at $x = x^*$. Note: \mathbb{R} denotes the set of real numbers.
(A)	local minimum
(B)	global minimum
(C)	local maximum
(D)	global maximum

Q.16	Match the items in Column 1 with the items in Column 2 in the following table:		
	Column 1 Column 2		
	(p) First In First Out (i) Stacks		
	(q) Lookup Operation (ii) Queues		
	(r) Last In First Out (iii) Hash Tables		
(A)	(p) - (ii), (q) - (iii), (r) - (i)		
(B)	(p) - (ii), (q) - (i), (r) - (iii)		
(C)	(p) - (i), (q) - (ii), (r) - (iii)		
(D)	(p) - (i), (q) - (iii), (r) - (ii)		

Q.17	Consider the dataset with six datapoints: $\{(x_1, y_1), (x_2, y_2), \dots, (x_6, y_6)\}$, where $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $x_3 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $x_4 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, $x_5 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $x_6 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$ and the labels are given by $y_1 = y_2 = y_5 = 1$, and $y_3 = y_4 = y_6 = -1$. A hard margin linear support vector machine is trained on the above dataset. Which ONE of the following sets is a possible set of support vectors?
(A)	$\{x_1, x_2, x_5\}$
(B)	$\{x_3, x_4, x_5\}$
(C)	$\{x_4, x_5\}$
(D)	$\{x_1, x_2, x_3, x_4\}$

Q.18	Match the items in Column 1 with the item	is in Column 2 in the following table:
	Column 1	Column 2
	(p) Principal Component Analysis	(i) Discriminative Model
	(q) Naïve Bayes Classification	(ii) Dimensionality Reduction
	(r) Logistic Regression	(iii) Generative Model
(A)	(p) - (iii), (q) - (i), (r) - (ii)	
(B)	(p) - (ii), (q) - (i), (r) - (iii)	
(C)	(p) - (ii), (q) - (iii), (r) - (i)	
(D)	(p) - (iii), (q) - (ii), (r) - (i)	

collegebatch.com Data Science and Artificial Intelligence (DA)

Q.19	Euclidean distance based k-means clustering algorithm was run on a dataset of 100 points with $k = 3$. If the points $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\1 \end{bmatrix}$ are both part of cluster 3, then which ONE of the following points is necessarily also part of cluster 3?
(A)	
(B)	$\begin{bmatrix} 0\\2 \end{bmatrix}$
(C)	
(D)	

Q.20	Given a dataset with K binary-valued attributes (where $K > 2$) for a two-class classification task, the number of parameters to be estimated for learning a naïve Bayes classifier is
(A)	$2^{K} + 1$
(B)	2K + 1
(C)	$2^{K+1} + 1$
(D)	$K^{2} + 1$

Q.21	Consider performing uniform hashing on an open address hash table with load factor $\alpha = \frac{n}{m} < 1$, where <i>n</i> elements are stored in the table with <i>m</i> slots. The expected number of probes in an unsuccessful search is at most $\frac{1}{1-\alpha}$. Inserting an element in this hash table requires at most probes, on average.
(A)	$\ln\left(\frac{1}{1-\alpha}\right)$
(B)	$\frac{1}{1-\alpha}$
(C)	$1 + \frac{\alpha}{2}$
(D)	$\frac{1}{1+\alpha}$

Q.22	For any binary classification dataset, let $S_B \in \mathbb{R}^{d \times d}$ and $S_W \in \mathbb{R}^{d \times d}$ be the between-class and within-class scatter (covariance) matrices, respectively. The Fisher linear discriminant is defined by $u^* \in \mathbb{R}^d$, that maximizes
	$J(u) = \frac{u^T S_B u}{u^T S_W u}$
	If $\lambda = J(u^*)$, S_W is non-singular and $S_B \neq 0$, then (u^*, λ) must satisfy which ONE of the following equations?
	Note: \mathbb{R} denotes the set of real numbers.
(A)	$S_W^{-1}S_B u^* = \lambda u^*$
(B)	$S_W u^* = \lambda S_B u^*$
(C)	$S_B S_W u^* = \lambda u^*$
(D)	$u^{*T}u^* = \lambda^2$

Т

Q.23	Let h_1 and h_2 be two admissible heuristics used in A^* search. Which ONE of the following expressions is always an admissible heuristic?
(A)	$h_1 + h_2$
(B)	$h_1 \times h_2$
(C)	h_1/h_2 , $(h_2 \neq 0)$
(D)	$ h_1 - h_2 $

Q.24	Consider five random variables U, V, W, X , and Y whose joint distribution satisfies:
	P(U, V, W, X, Y) = P(U)P(V)P(W U, V)P(X W)P(Y W)
	Which ONE of the following statements is FALSE?
(A)	Y is conditionally independent of V given W
(B)	X is conditionally independent of U given W
(C)	U and V are conditionally independent given W
(D)	Y and X are conditionally independent given W

Q.25	Consider the following statement:
	In adversarial search, $\alpha - \beta$ pruning can be applied to game trees of any depth where α is the <u>(m)</u> value choice we have formed so far at any choice point along the path for the MAX player and β is the <u>(n)</u> value choice we have formed so far at any choice point along the path for the MIN player.
	Which ONE of the following choices of (m) and (n) makes the above statement valid?
(A)	$(\mathbf{m}) = \text{highest}, (\mathbf{n}) = \text{highest}$
(B)	$(\mathbf{m}) = $ lowest, $(\mathbf{n}) = $ highest
(C)	$(\mathbf{m}) = $ highest, $(\mathbf{n}) = $ lowest
(D)	$(\mathbf{m}) = \text{lowest}, (\mathbf{n}) = \text{lowest}$

Q.26	Consider a database that includes the following relations:
	Defender(name, rating, side, goals)
	Forward(name, rating, assists, goals)
	Team(name, club, price)
	Which ONE of the following relational algebra expressions checks that every name occurring in Team appears in either Defender or Forward, where ϕ denotes the empty set?
(A)	$\Pi_{name}(\text{Team}) \setminus (\Pi_{name}(\text{Defender}) \cap \Pi_{name}(\text{Forward})) = \phi$
(B)	$(\Pi_{name}(\text{Defender}) \cap \Pi_{name}(\text{Forward})) \setminus \Pi_{name}(\text{Team}) = \phi$
(C)	$\Pi_{name}(\text{Team}) \setminus (\Pi_{name}(\text{Defender}) \cup \Pi_{name}(\text{Forward})) = \phi$
(D)	$(\Pi_{name}(\text{Defender}) \cup \Pi_{name}(\text{Forward})) \setminus \Pi_{name}(\text{Team}) = \phi$

Q.27	Let the minimum, maximum, mean and standard deviation values for the attribute <i>income</i> of data scientists be ₹46000, ₹170000, ₹96000, and ₹21000, respectively. The <i>z</i> -score normalized <i>income</i> value of ₹106000 is closest to which ONE of the following options?
(A)	0.217
(B)	0.476
(C)	0.623
(D)	2.304

Q.28	Consider the following tree traversals on a full binary tree:
	 (i) Preorder (ii) Inorder (iii) Postorder
	Which of the following traversal options is/are sufficient to uniquely reconstruct the full binary tree?
(A)	(i) and (ii)
(B)	(ii) and (iii)
(C)	(i) and (iii)
(D)	(ii) only

Q.29	Let x and y be two propositions. Which of the following statements is a tautology /are tautologies?
(A)	$(\neg x \land y) \Longrightarrow (y \Longrightarrow x)$
(B)	$(x \land \neg y) \Longrightarrow (\neg x \Longrightarrow y)$
(C)	$(\neg x \land y) \Rightarrow (\neg x \Rightarrow y)$
(D)	$(x \land \neg y) \Rightarrow (y \Rightarrow x)$

Q.30	Consider sorting the following array of integers in ascending order using an in-place Quicksort algorithm that uses the last element as the pivot.	
	60 70 80 90 100	
	The minimum number of swaps performed during this Quicksort is	

collegebatch.com

Q.31 Consider the following two tables named Raider and Team in a relational database maintained by a Kabaddi league. The attribute *ID* in table Team references the primary key of the Raider table, *ID*.

	Raider			
ID	Name	Raids	RaidPoints	
1	Arjun	200	250	
2	Ankush	190	219	
3	Sunil	150	200	
4	Reza	150	190	
5	Pratham	175	220	
6	Gopal	193	215	

Team		
City	ID	BidPoints
Jaipur	2	200
Patna	3	195
Hyderabad	5	175
Jaipur	1	250
Patna	4	200
Jaipur	6	200

The SQL query described below is executed on this database:

```
SELECT *
FROM Raider, Team
WHERE Raider.ID=Team.ID AND City="Jaipur" AND
RaidPoints > 200;
```

The number of rows returned by this query is _____.

Q.32	The fundamental operations in a double-ended queue D are:
	<pre>insertFirst(e) - Insert a new element e at the beginning of D. insertLast(e) - Insert a new element e at the end of D. removeFirst() - Remove and return the first element of D. removeLast() - Remove and return the last element of D.</pre>
	In an empty double-ended queue, the following operations are performed:
	insertFirst(10)
	insertLast(32)
	a ←removeFirst()
	insertLast(28)
	insertLast(17)
	a ←removeFirst()
	<pre>a ← removeLast()</pre>
	The value of a is

Q.33	Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = \frac{1}{1+e^{-x}}$.
	The value of the derivative of f at x where $f(x) = 0.4$ is (rounded off to two decimal places).
	Note : \mathbb{R} denotes the set of real numbers.

Q.34	The sample average of 50 data points is 40. The updated sample average af including a new data point taking the value of 142 is	fter

Q.35	Consider the 3 × 3 matrix $M = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 3 \\ 4 & 3 & 6 \end{bmatrix}$.
	The determinant of $(M^2 + 12M)$ is

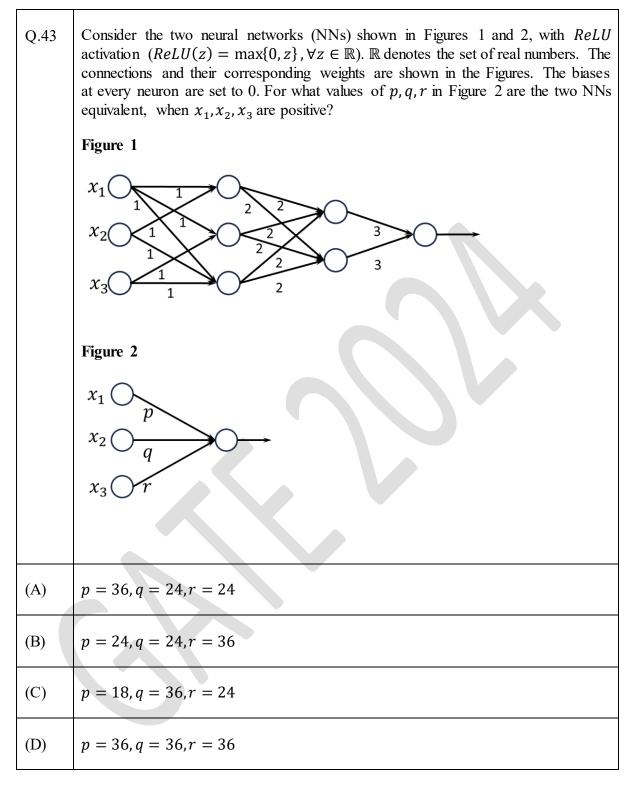
Q.36	A fair six-sided die (with faces numbered 1, 2, 3, 4, 5, 6) is repeatedly thrown independently.
	What is the expected number of times the die is thrown until two consecutive throws of even numbers are seen?
(A)	2
(B)	4
(C)	6
(D)	8

Q.37	Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Note: \mathbb{R} denotes the set of real numbers.
	$f(x) = \begin{cases} -x, & \text{if } x < -2\\ ax^2 + bx + c, & \text{if } x \in [-2, 2]\\ x, & \text{if } x > 2 \end{cases}$
	Which ONE of the following choices gives the values of a, b, c that make the function f continuous and differentiable?
(A)	$a = \frac{1}{4}, b = 0, c = 1$
(B)	$a = \frac{1}{2}, b = 0, c = 0$
(C)	a = 0, b = 0, c = 0
(D)	a = 1, b = 1, c = -4

Q.38 Consider the following Python code: def count(child dict, i): if i not in child dict.keys(): return 1 ans = 1for j in child dict[i]: ans += count(child dict, j) return ans child dict = dict() child dict[0] = [1,2] $child_dict[1] = [3, 4, 5]$ child dict[2] = [6,7,8]print(count(child dict,0)) Which **ONE** of the following is the output of this code? (A) 6 **(B)** 1 8 (C) 9 (D)

Q.39	Consider the function computes (X) whose pseudocode is given below:
	$\frac{\texttt{computes}(X)}{S[1] \leftarrow 1}$ for $i \leftarrow 2$ to $length(X)$ $S[i] \leftarrow 1$ if $X[i-1] \leq X[i]$ $S[i] \leftarrow S[i] + S[i-1]$ end if end for return S Which ONE of the following values is returned by the function computes (X) for $X = [6, 3, 5, 4, 10]$?
(A)	[1, 1, 2, 3, 4]
(B)	[1, 1, 2, 3, 3]
(C)	[1, 1, 2, 1, 2]
(D)	[1, 1, 2, 1, 5]

Data Science and Artificial Intelligence (DA)


Q.40	Let $F(n)$ denote the maximum number of comparisons made while searching for an entry in a sorted array of size n using binary search. Which ONE of the following options is TRUE ?
(A)	$F(n) = F(\lfloor n/2 \rfloor) + 1$
(B)	$F(n) = F(\lfloor n/2 \rfloor) + F(\lfloor n/2 \rfloor)$
(C)	$F(n) = F(\lfloor n/2 \rfloor)$
(D)	F(n) = F(n-1) + 1

Q.41	Consider the following Python function:
	<pre>def fun(D, s1, s2): if s1 < s2: D[s1], D[s2] = D[s2], D[s1] fun(D, s1+1, s2-1)</pre>
	What does this Python function fun() do? Select the ONE appropriate option below.
	below.
(A)	It finds the smallest element in D from index s1 to s2, both inclusive.
(B)	It performs a merge sort in-place on this list D between indices s1 and s2, both inclusive.
(C)	It reverses the list D between indices s1 and s2, both inclusive.
(D)	It swaps the elements in D at indices s1 and s2, and leaves the remaining elements unchanged.

Q.42	Consider the table below, where the $(i, j)^{th}$ element of the table is the distance between points x_i and x_j . Single linkage clustering is performed on data points, x_1, x_2, x_3, x_4, x_5 .							
			<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	
		<i>x</i> ₁	0	1	4	3	6	
		<i>x</i> ₂	1	0	3	5	3	
		<i>x</i> ₃	4	3	0	2	5	
		<i>x</i> ₄	3	5	2	0	1	
		<i>x</i> ₅	6	3	5	1	0	
	Which ONE of	the fol	llowing	g is th	ne corr	rect rej	presen	tation of the clusters produced?
(A)	$x_1 x_2 x_3 x_4$							
(B)								
(C)		$\begin{vmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$						
(D)	$x_1 x_2 x_3 x_4$	$\begin{vmatrix} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $						

Q.44	Consider a state space where the start state is number 1. The successor function for the state numbered n returns two states numbered $n+1$ and $n+2$. Assume that the states in the unexpanded state list are expanded in the ascending order of numbers and the previously expanded states are not added to the unexpanded state list. Which ONE of the following statements about breadth-first search (BFS) and depth-first search (DFS) is true, when reaching the goal state number 6?
(A)	BFS expands more states than DFS.
(B)	DFS expands more states than BFS.
(C)	Both BFS and DFS expand equal number of states.
(D)	Both BFS and DFS do not reach the goal state number 6.

Q.45	Consider the following sorting algorithms:
	 (i) Bubble sort (ii) Insertion sort (iii) Selection sort
	Which ONE among the following choices of sorting algorithms sorts the numbers in the array [4, 3, 2, 1, 5] in increasing order after exactly two passes over the array?
(A)	(i) only
(B)	(iii) only
(C)	(i) and (iii) only
(D)	(ii) and (iii) only

Q.46	Given the relational schema $R = (U, V, W, X, Y, Z)$ and the set of functional dependencies:
	$\{U \to V, U \to W, WX \to Y, WX \to Z, V \to X\}$
	Which of the following functional dependencies can be derived from the above set?
(A)	$VW \rightarrow YZ$
(B)	$WX \rightarrow YZ$
(C)	$VW \rightarrow U$
(D)	$VW \rightarrow Y$

Data Science and Artificial Intelligence (DA)

Q.47	Select all choices that are subspaces of \mathbb{R}^3 . Note: \mathbb{R} denotes the set of real numbers.
(A)	$\left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3: \ \mathbf{x} = \alpha \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \alpha, \beta \in \mathbb{R} \right\}$
(B)	$\left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3: \ \mathbf{x} = \alpha^2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \beta^2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \alpha, \beta \in \mathbb{R} \right\}$
(C)	$\left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3: \ 5x_1 + 2x_3 = 0, 4x_1 - 2x_2 + 3x_3 = 0 \right\}$
(D)	$\left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \colon 5x_1 + 2x_3 + 4 = 0 \right\}$

Q.48	Which of the following statements is/are TRUE? Note: \mathbb{R} denotes the set of real numbers.
(A)	There exist $M \in \mathbb{R}^{3\times 3}$, $p \in \mathbb{R}^3$, and $q \in \mathbb{R}^3$ such that $M\mathbf{x} = p$ has a unique solution and $M\mathbf{x} = q$ has infinite solutions.
(B)	There exist $M \in \mathbb{R}^{3\times 3}$, $p \in \mathbb{R}^3$, and $q \in \mathbb{R}^3$ such that $Mx = p$ has no solutions and $Mx = q$ has infinite solutions.
(C)	There exist $M \in \mathbb{R}^{2\times 3}$, $p \in \mathbb{R}^2$, and $q \in \mathbb{R}^2$ such that $M\mathbf{x} = p$ has a unique solution and $M\mathbf{x} = q$ has infinite solutions.
(D)	There exist $M \in \mathbb{R}^{3 \times 2}$, $p \in \mathbb{R}^3$, and $q \in \mathbb{R}^3$ such that $M\mathbf{x} = p$ has a unique solution and $M\mathbf{x} = q$ has no solutions.

Γ

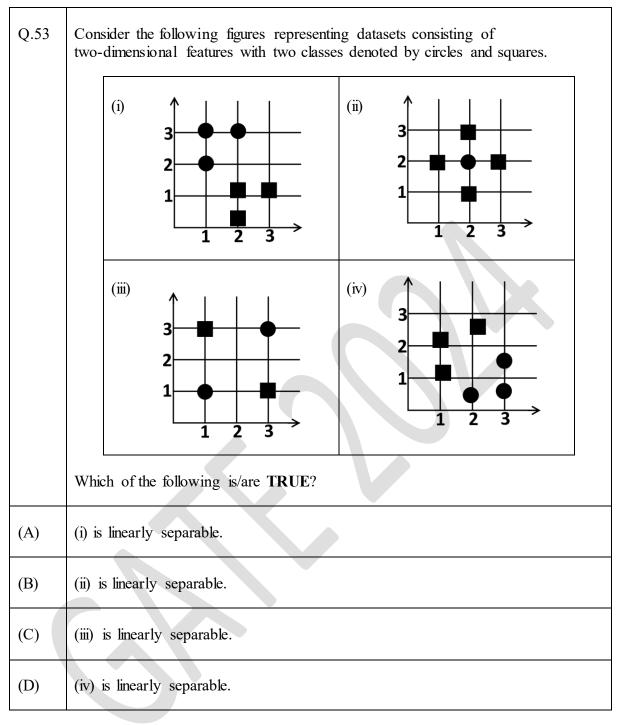
Q.49	Let \mathbb{R} be the set of real numbers, U be a subspace of \mathbb{R}^3 and $M \in \mathbb{R}^{3 \times 3}$ be the matrix corresponding to the projection on to the subspace U . Which of the following statements is/are TRUE ?
(A)	If U is a 1-dimensional subspace of \mathbb{R}^3 , then the null space of M is a 1-dimensional subspace.
(B)	If U is a 2-dimensional subspace of \mathbb{R}^3 , then the null space of M is a 1-dimensional subspace.
(C)	$M^2 = M$
(D)	$M^3 = M$

Q.50	Consider the function $f: \mathbb{R} \to \mathbb{R}$ where \mathbb{R} is the set of all real numbers.
	$f(x) = \frac{x^4}{4} - \frac{2x^3}{3} - \frac{3x^2}{2} + 1$
	Which of the following statements is/are TRUE?
(A)	x = 0 is a local maximum of f
(B)	x = 3 is a local minimum of f
(C)	x = -1 is a local maximum of f
(D)	x = 0 is a local minimum of f

Q.51	Consider the directed acyclic graph (DAG) below:
	Which of the following is/are valid vertex orderings that can be obtained from a
	topological sort of the DAG?
(A)	PQRSTUV
(B)	PRQVSUT
(C)	PQRSVUT
(D)	PRQSVTU
•	

Г

Data Science and Artificial Intelligence (DA)


Q.52	Let <i>H</i> , <i>I</i> , <i>L</i> , and <i>N</i> represent height, number of internal nodes, number of leaf nodes, and the total number of nodes respectively in a rooted binary tree. Which of the following statements is/are always TRUE ?
(A)	$L \le I + 1$
(B)	$H+1 \le N \le 2^{H+1}-1$
(C)	$H \le I \le 2^H - 1$
(D)	$H \le L \le 2^{H-1}$

Data Science and Artificial Intelligence (DA)

Ν

collegebatch.com

Q.54	Let game(ball, rugby) be true if the ball is used in rugby and false otherwise.
	Let shape(ball, round) be true if the ball is round and false otherwise.
	Consider the following logical sentences:
	$s1: \forall ball \neg game(ball, rugby) \Longrightarrow shape(ball, round)$
	s2: $\forall ball \neg shape(ball, round) \Longrightarrow game(ball, rugby)$
	s3: \forall ball game(ball, rugby) $\Rightarrow \neg$ shape(ball, round)
	s4: \forall ball shape(ball, round) $\Rightarrow \neg$ game(ball, rugby)
	Which of the following choices is/are logical representations of the assertion,
	"All balls are round except balls used in rugby"?
(A)	s1 ^ s3
(B)	s1 ^ s2
(C)	s2 ^ s3
(D)	s3 ^ s4

-

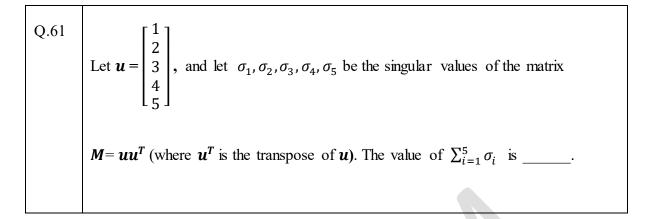
Q.55	An OTT company is maintaining a large disk-based relational database of different movies with the following schema:
	Movie(<u>ID</u> , CustomerRating) Genre(<u>ID</u> , Name) Movie_Genre(<u>MovieID</u> , <u>GenreID</u>)
	Consider the following SQL query on the relation database above:
	SELECT * FROM Movie, Genre, Movie_Genre WHERE
	Movie.CustomerRating > 3.4 AND Genre.Name = "Comedy" AND Movie_Genre.MovieID = Movie.ID AND Movie_Genre.GenreID = Genre.ID;
	This SQL query can be sped up using which of the following indexing options?
А	B ⁺ tree on all the attributes.
В	Hash index on Genre. Name and B ⁺ tree on the remaining attributes.
С	Hash index on Movie. <i>CustomerRating</i> and B ⁺ tree on the remaining attributes.
D	Hash index on all the attributes.

0.50	
Q.56	Let X be a random variable uniformly distributed in the interval [1, 3] and Y be a
	random variable uniformly distributed in the interval [2, 4]. If X and Y are
	independent of each other, the probability $P(X \ge Y)$ is (rounded off to
	three decimal places).

Q.57 Let X be a random variable exponentially distributed with parameter
$$\lambda > 0$$
. The probability density function of X is given by:

$$f_X(x) = \begin{cases} \lambda \ e^{-\lambda x}, & x \ge 0\\ 0, & otherwise \end{cases}$$
If $5E(X) = Var(X)$, where $E(X)$ and $Var(X)$ indicate the expectation and variance of X, respectively, the value of λ is _____ (rounded off to **one** decimal place).

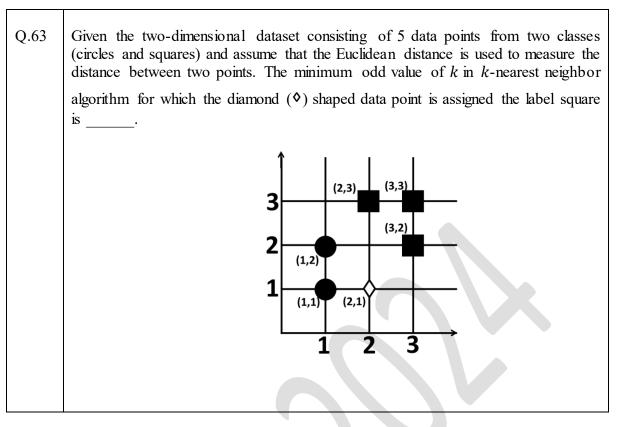
Q.58 Consider two events
$$T$$
 and S . Let \overline{T} denote the complement of the event T . The probability associated with different events are given as follows:
 $P(\overline{T}) = 0.6, \quad P(S|T) = 0.3, \quad P(S|\overline{T}) = 0.6$
Then, $P(T|S)$ is _____ (rounded off to two decimal places).


Q.59 Consider a joint probability density function of two random variables X and Y

$$f_{X,Y}(x,y) = \begin{cases} 2xy, & 0 < x < 2, & 0 < y < x \\ 0, & \text{otherwise} \end{cases}$$
Then, $E[Y|X = 1.5]$ is _____.

Q.60 Evaluate the following limit:

$$\lim_{x \to 0} \frac{\ln((x^2+1)\cos x)}{x^2} = \underline{\qquad}.$$



Q.62	are given in Ta across formats values: spin-frid attribute <i>Forma</i> test match (repr A cricket organ a decision-tree	able C. This ta along with the endly (represent at can take one resented as T) ization would model to predi- h a model, the	able cons eir winne ented as e of two like to us ict outcor e compute	sists of ma ers. The at S) or pace values: one se the inform mes of futur	en two teams "Great tches played on di ttribute <i>Pitch</i> can t e-friendly (represen e-day match (repre mation given in Tal re games between t tionGain(C, <i>Pitch</i>) l places).	ifferent pitches, take one of two nted as F). The sented as O) or one of two develop hese two teams.			
	Table C								
		Match Number	Pitch	Format	Winner (Target)				
		1	S	Т	Green				
		2	S	Т	Blue				
		3	F	0	Blue				
		4	S	0	Blue				
		5	F	Т	Green				
		6	F	0	Blue				
		7	S	0	Green				
		8	F	Т	Blue				
		9	F	0	Blue				
		10	S	0	Green]			

Ν

collegebatch.com

Q.64	Given the following Bayesian Network consisting of four Bernoulli random variables and the associated conditional probability tables:
	$P(V = 0 \cdot)$ $P(V = 1 \cdot)$ $P(V = 1 \cdot)$
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	$P(Z = 0 \cdot)$ $P(Z = 1 \cdot)$ $V = 0$ $W = 0$ 0.5 0.5 $V = 0$ $W = 1$ 10 $V = 1$ $W = 0$ 10 $V = 1$ $W = 1$ 0.5 0.5
	The value of $P(U = 1, V = 1, W = 1, Z = 1) =$ (rounded off to three decimal places).

Q.65	Two fair coins are tossed independently. X is a random variable that takes a value of 1 if both tosses are heads and 0 otherwise. Y is a random variable that takes a value of 1 if at least one of the tosses is heads and 0 otherwise.	
	The value of the covariance of X and Y is (rounded off to three decimal places).	