

click to campus

GATE 2024 Instrumentation Engineering (IN) Question Paper

Graduate Aptitude Test in Engineering (GATE)

Download more GATE Previous Year Question Papers: Click Here

General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

Q.1	If ' \rightarrow ' denotes increasing order of intensity, then the meaning of the words
	Which one of the given options is appropriate to fill the blank?
(A)	bicker
(B)	bog
(C)	dither
(D)	dodge

Q.2	Statements:	
	1. All heroes are winners.	
	2. All winners are lucky people.	
	Inferences:	
	I. All lucky people are heroes.	
	II. Some lucky people are heroes.	
	III. Some winners are heroes.	
	Which of the above inferences can be logically deduced from statements 1 and 2?	
(A)	Only I and II	
(B)	Only II and III	
(C)	Only I and III	
(D)	Only III	

г

Т

1

Instrumentation	Engineering	(IN)
------------------------	-------------	------

Q.3	A student was supposed to multiply a positive real number p with another positive real number q . Instead, the student divided p by q . If the percentage error in the student's answer is 80%, the value of q is
(A)	5
(B)	$\sqrt{2}$
(C)	2
(D)	$\sqrt{5}$
Q.4	If the sum of the first 20 consecutive positive odd numbers is divided by 20^2 , the result is
(A)	1
(B)	20
(C)	2
(D)	1/2

Γ

Q.5	The ratio of the number of girls to boys in class VIII is the same as the ratio of the number of boys to girls in class IX. The total number of students (boys and girls) in classes VIII and IX is 450 and 360, respectively. If the number of girls in classes VIII and IX is the same, then the number of girls in each class is
(A)	150
(B)	200
(C)	250
(D)	175

Q.6 – Q.10 Carry TWO marks Each

Q.6	In the given text, the blanks are numbered $(i)-(iv)$. Select the best match for all the blanks.
	Yoko Roi stands <u>(i)</u> as an author for standing <u>(ii)</u> as an honorary fellow, after she stood <u>(iii)</u> her writings that stand <u>(iv)</u> the freedom of speech.
(A)	(i) out (ii) down (iii) in (iv) for
(B)	(i) down (ii) out (iii) by (iv) in
(C)	(i) down (ii) out (iii) for (iv) in
(D)	(i) out (ii) down (iii) by (iv) for

Q.7	Seven identical cylindrical chalk-sticks are fitted tightly in a cylindrical container. The figure below shows the arrangement of the chalk-sticks inside the cylinder.
	The length of the container is equal to the length of the chalk-sticks. The ratio of the occupied space to the empty space of the container is
(A)	5/2
(B)	7/2
(C)	9/2
(D)	3

Q.8 The plot below shows the relationship between the mortality risk of cardiovascular disease and the number of steps a person walks per day. Based on the data, which one of the following options is true? 1 Mortality Risk of Cardiovas cular Disease 0.8 0.6 0.4 0.2 0 5000 10000 15000 20000 0 Steps/Day (A) The risk reduction on increasing the steps/day from 0 to 10000 is less than the risk reduction on increasing the steps/day from 10000 to 20000. **(B)** The risk reduction on increasing the steps/day from 0 to 5000 is less than the risk reduction on increasing the steps/day from 15000 to 20000. (C) For any 5000 increment in steps/day the largest risk reduction occurs on going from 0 to 5000. For any 5000 increment in steps/day the largest risk reduction occurs on going from (D) 15000 to 20000.

collegebatch.com Instrumentation Engineering (IN)

Q.10	Visualize a cube that is held with one of the four body diagonals aligned to the vertical axis. Rotate the cube about this axis such that its view remains unchanged. The magnitude of the minimum angle of rotation is
(A)	120°
(B)	60°
(C)	90°
(D)	180°

Q.11 – Q.35 Carry ONE mark Each

Q.11	Let $z = x + iy$ be a complex variable and \overline{z} be its complex conjugate. The equation $\overline{z}^2 + z^2 = 2$ represents a	
(A)	parabola	
(B)	hyperbola	
(C)	ellipse	
(D)	circle	
Q.12	The pressure drop across a control valve is constant. The control valve with inherent characteristic has decreasing sensitivity. If x represents the fraction of maximum stem position of the control valve, then the function $f(x)$ representing the fraction of maximum flow is	
(A)	α^{x-1} , where α is constant	
(B)	\sqrt{x}	
(C)	x	
(D)	<i>x</i> ²	

collegebatch.com

Q.13	A discrete-time sequence is given by $x[n] = [1, 2, 3, 4]$ for $0 \le n \le 3$. The zero lag auto-correlation value of $x[n]$ is
(A)	1
(B)	10
(C)	20
(D)	30

Q.14	Match the following measuring devices with their principle of measurement.		
	Measuring Device	Principle of Measurement	
	(P) Optical pyrometer ((I) Variation in mutual inductance	
	(Q) Thermocouple	(II) Change in resistance	
	(R) Strain gauge	(III) Wavelength of radiated energy	
	(S) Linear variable differential transformer	(IV) Electromotive force generated by two dissimilar metals	
(A)	(P) - (III), (Q) - (IV), (R) - (II), (S) - (I)		
(B)	(P) - (IV), (Q) - (III), (R) - (II), (S) - (I)		
(C)	(P) - (III), (Q) - (I), (R) - (IV), (S) - (II)		
(D)	(P) – (II), (Q) – (IV), (R) – (I), (S) – (III)		

Г

Т

Q.16	Among the given options, the simplified form of the Boolean function $F = (A + \overline{A}.B) + \overline{A}.(A + \overline{B}).C$ is
(A)	A + B + C
(B)	A. B. C
(C)	$B + \overline{A}.C$
(D)	$\overline{A} + B.C$
Q.17	Consider the state-space representation of a system
	$\dot{x} = Ax + Bu$ where x is the state vector, u is the input, A is the system matrix and B is the input matrix. Choose the matrix A from the following options such that the system has a pole at the origin.
(A)	$\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$
(B)	$\begin{bmatrix} 1 & -1.5 \\ -2 & 3 \end{bmatrix}$
(C)	$\begin{bmatrix} 1 & 1.5 \\ 2 & -3 \end{bmatrix}$
(D)	$\begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$

collegebatch.com

Instrumentation Engineering (IN)

Q.18	The sinusoidal transfer function corresponding to the polar plot shown in the figure, for $T > 0$, is
	Im 1 $\omega = 0$ Re $\omega \to \infty$
(A)	$1 - j\omega T$
(B)	$\frac{1-j\omega T}{1+j\omega T}$
(C)	$1 + j\omega T$
(D)	$\frac{1}{1+j\omega T}$

Instrumentation Engineering (IN)

Q.19	A matrix <i>M</i> is constructed by stacking three column vectors v_1, v_2, v_3 as
	$M = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}.$
	Choose the set of vectors from the following options such that $rank(M) = 3$.
(A)	$v_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, v_2 = \begin{bmatrix} 0\\-1\\0 \end{bmatrix}, v_3 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$
(B)	$v_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, v_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$
(C)	$v_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, v_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, v_3 = \begin{bmatrix} -1\\-1\\1 \end{bmatrix}$
(D)	$v_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, v_2 = \begin{bmatrix} -1\\1\\-1 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\-1\\0 \end{bmatrix}$

Q.20	The capacitance formed between two concentric spherical metal shells having radii x and y with $y > x$ is
	Note: ϵ is the permittivity of the medium between the shells.
(A)	$4\pi\epsilon\left(\frac{xy}{y-x}\right)$
(B)	$4\pi\epsilon\left(\frac{x^2}{y-x}\right)$
(C)	$4\pi\epsilon\left(\frac{y^2}{y-x}\right)$
(D)	$4\pi\epsilon\left(\frac{y^2 - xy}{x}\right)$
Q.21	A linear transducer is calibrated for the ranges shown in the figure. The gain of the transducer is $mA/^{\circ}C$ (rounded off to two decimal places).
	Transducer 💊
	$50 \circ C = 150 \circ C$
	So C 190 C Temperature Current 4 mA - 20 mA Sensor Transmitter 1

Q.24	Figure shows an amplifier using an NMOS transistor. Assume that the transistor is in saturation with device parameters, $\mu_n C_{ox} = 250 \ \mu A/V^2$, threshold voltage $V_T = 0.65 \ V$ and $W/L = 4$. Ignore the channel length modulation effect. The drain current of the transistor at the operating point is μA (rounded off to nearest integer).			
	$3.3 V$ $3.3 k\Omega$ $100 k\Omega$ C_{large}			
Q.25	The number of complex multiplications required for computing a 16-point DFT using the decimation-in-time radix-2 FFT is (in integer).			
Q.26	A 3 × 3 matrix P with all real elements has eigenvalues $\frac{1}{4}$, 1, and -2. The value of $ P^{-1} $ is (rounded off to nearest integer).			
Q.27	The Nyquist sampling frequency for $x(t) = 10 \sin^2(200\pi t)$ is Hz (rounded off to nearest integer).			

Q.33	The switch in the following figure has been closed for a long time $(t < 0)$. It is opened at $t = 0$ seconds. The value of dv_c/dt at $t = 0^+$ is V/s (rounded off to nearest integer).		
	$i_{\underline{L}(\underline{t})}$ 4Ω $0.25 H$ 4Ω $v_{c}(\underline{t})$ $t = 0$ Switch		
Q.34	Consider a system given by the following first order differential equation: $\frac{dy}{dt} = y + 2t - t^2$ where, $y(0) = 1$ and $0 \le t < \infty$. Using a step size $h = 0.1$ for the improved Euler method, the value of $y(t)$ at $t = 0.1$ is (rounded off to two decimal places).		
Q.35	Indian Premier League has divided the sixteen cricket teams into two equal pools: Pool-A and Pool-B. Four teams of Pool-A have blue logo jerseys while the rest four have red logo jerseys. Five teams of Pool-B have blue logo jerseys while the rest three have red logo jerseys. If one team from each pool reaches the final, the probability that one team has a blue logo jersey and another has a red logo jersey is (rounded off to one decimal place).		

Q.36 - Q.65 Carry TWO marks Each

Q.36	A wire of circular cross section with radius a is shown in the figure. The current density is given by $\mathbf{J} = ks^2$, where k is a constant, s is the radial distance from the axis and $0 \le s \le a$. The total current I in the wire is			
	$\begin{array}{c} \hline a \\ \hline \hline I \\ \hline \end{array} \\ \hline Axis \\ \hline Axis \\ \hline Axis \\ \hline Axis \\ \hline \end{array}$			
(A)	$\frac{\pi k a^4}{2}$			
(B)	$\frac{2\pi k a^3}{3}$			
(C)	$\frac{\pi k a^3}{2}$			
(D)	$\frac{\pi k a^4}{4}$			

Q.37 The measured values from a flow instrument, whose range is between 0 and 2 flow units, are shown in the histogram. The systematic error (bias) and the maximum error (in flow units), respectively are True Value 12 11 10 **Measured Values** Number of occurrence of a particular reading 9 **8** 7 6 5 4 3 2 1 0 tt 0 0.25 0.35 0.36 0.37 0.38 0.39 Q (flow units) (A) 0.12 and 0.14 **(B)** 0.01 and 0.10 (C) 0.10 and 0.14 (D) 0.04 and 0.12

Q.38	Consider a discrete-time sequence
	$x[n] = \begin{cases} (0.2)^n, & 0 \le n \le 7\\ 0, & \text{otherwise} \end{cases}$
	The region of convergence of $X(z)$, the z-transform of $x[n]$, consists of
(A)	all values of z except $z = 0.2$
(B)	all values of z
(C)	all values of z except $z = 0$
(D)	all values of <i>z</i> except $z = \infty$

Q.40	Laplace transform of a signal $x(t)$ is
	$X(s) = \frac{1}{s^2 + 13s + 42}$
	Let $u(t)$ be the unit step function. Choose the signal $x(t)$ from the following options if the region of convergence is $-7 < \text{Re}\{s\} < -6$.
(A)	$-e^{-6t}u(t) - e^{-7t}u(-t)$
(B)	$-e^{-6t}u(-t) - e^{-7t}u(t)$
(C)	$e^{-6t}u(t) - e^{-7t}u(-t)$
(D)	$-e^{-6t}u(-t) - e^{-7t}u(-t)$

Q.41 In the figure shown, both the opamps A_1 and A_2 are ideal, except that the opamp A_1 has an offset voltage (V_{os}) of 1 mV. For $V_{in} = 0$ V, the values of the output voltages V_{out1} and V_{out2} , respectively, are

Q.42 In the figure shown, the positive edge triggered D flip-flops are initially reset to Q = 0. The logic gates and the multiplexers have no propagation delay. After reset, a train of clock pulses (CLK) are applied. The logic-states of the inputs DIN, S and the clock pulses are also shown in the figure. Assuming no timing violations, the sequence of output Y from the 3rd clock to the 5th clock, Y₃Y₄Y₅ is

collegebatch.com

Instrumentation Engineering (IN)

٦

Q.46	Let <i>C</i> be the closed curve in the <i>xy</i> -plane, traversed in the counterclockwise direction along the boundary of the rectangle with vertices at $(0,0), (2,0), (2,1), (0,1)$. The value of the line integral $\oint_C (-e^y dx + e^x dy)$ is
(A)	$e^2 + 2e - 3$
(B)	$e^2 - 2e - 3$
(C)	$e^2 + e - 1$
(D)	$e^2 + e + 1$

Г

Instrumentation Engineering (IN)

Q.49	The complex functions $f(z)$ = are both analytic in a given following.	= u(x, y) + domain.	i v(x, y) and the choose the c	nd $\overline{f(z)} = a$ e correct of	u(x,y) - i option(s) from	v(x,y) om the
(A)	$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0$					
(B)	$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \neq 0$					
(C)	$\frac{df(z)}{dz} = 0$					
(D)	$\frac{df(z)}{dz} \neq 0$					
Q.50	The readings recorded from a regression line obtained for coefficient of determination, places).	20-psig protection the data $R^2 = $	essure gaug is $y = 0.0$ (rou	e are given $4 x + 10.3$ and ed off	in the Tab 2. The reg to three d	le. The ression ecimal
		2	2	4	5	
		2	3	4	3	
	y (psig) 10.3	10.5	10.4	10.5	10.5	

Instrumentation Engineering (IN)

Q.61	A 50 kVA transformer has an efficiency of 95% at full load and unity power factor. Assume the core losses are negligible. The efficiency of the transformer at 75% of the full load and 0.8 power factor is% (rounded off to one decimal place).
Q.62	A three-phase squirrel-cage induction motor has a starting torque of 100% of the full load torque and a maximum torque of 300% of the full load torque. Neglecting the stator impedance, the slip at the maximum torque is% (rounded off to two decimal places).
Q.63	Two magnetically coupled coils, when connected in series-aiding configuration, have a total inductance of 500 mH. When connected in series-opposing configuration, the coils have a total inductance of 300 mH. If the self-inductance of both the coils are equal, then the coupling coefficient is (rounded off to two decimal places).
Q.64	The solution of an ordinary differential equation $y''' + 3y'' + 3y' + y = 30e^{-t}$ is $y(t) = (c_0 + c_1t - c_2t^2 + c_3t^3)e^{-t}$
	Given $y(0) = 3$, $y'(0) = -3$ and $y''(0) = -47$, the value of $(c_0 + c_1 + c_2 + c_3)$ is(rounded off to nearest integer).
	Note: $y''' = d^3y/dt^3$, $y'' = d^2y/dt^2$, $y' = dy/dt$ and c_0 , c_1 , c_2 , c_3 are constants.

