

click to campus

WBJEE 2023 Question Paper

West Bengal Joint Entrance Examinations

Download more WBJEE Previous Year Question Papers: Click Here

WBJEE 2023 Solved Paper

Mathematics

Question 1

 $\lim_{x\to\infty} \{x-\sqrt[n]{(x-a_1)(x-a_2)\dots(x-a_n)}\}$ where a_1,a_2,\dots,a_n are positive rational numbers. The limit

Options:

A. does not exist

B. is
$$\frac{a_1 + a_2 + \dots a_n}{n}$$

C. is
$$\sqrt[n]{a_1 a_2 \dots a_n}$$

D. is
$$\frac{n}{a_1 + a_2 + \dots a_n}$$

Answer: B

Solution:

Solution:

Question 2

Suppose $f : R \rightarrow R$ be given by

$$\mathbf{f(x)} = \begin{cases} 1 & \text{if } x = 1 \\ e^{(x^{10} - 1)} + (x - 1)^2 \sin \frac{1}{x - 1} & \text{if } x \neq 1 \end{cases}.$$

then

Options:

A. f (1) does not exist

B. f (1) exists and is zero

C. f (1) exist and is 9

D. f'(1) exists and is 10

Answer: D

Solution:

Let $f : [1, 3] \rightarrow R$ be continuous and be derivable in (1, 3) and $f'(x) = [f(x)]^2 + 4 \forall x \in (1, 3)$. Then

Options:

- A. f(3) f(1) = 5 holds
- B. f(3) f(1) = 5 does not hold
- C. f(3) f(1) = 3 holds
- D. f(3) f(1) = 4 holds

Answer: B

Solution:

Solution:

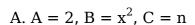
Question 4

f (x) is a differentiable function and given f (2) = 6 and f (1) = 4, then L = $\lim_{h\to 0} \frac{f(2+2h+h^2)-f(2)}{f(1+h-h^2)-f(1)}$

Options:

- A. does not exist
- B. equal to -3
- C. equal to 3
- D. equal to 3/2

Answer: C


Solution:

Solution:

Question 5

Let $\cos^{-1}\left(\frac{y}{b}\right) = \log_e\left(\frac{x}{n}\right)^n$, then $Ay_2 + By_1 + Cy = 0$ is possible for, where $y_2 = \frac{d^2y}{dx^2}$, $y_1 = \frac{dy}{dx}$

Options:

B.
$$A = x^2$$
, $B = x$, $C = n^2$

C.
$$A = x$$
, $B = 2x$, $C = 3n + 1$

D.
$$A = x^2$$
, $B = 3x$, $C = 2n$

Answer: B

Solution:

Solution:

Question 6

If I =
$$\int \frac{x^2 dx}{(x \sin x + \cos x)^2} = f(x) + \tan x + c$$
, then f(x) is

collegebatch.com

Options:

A.
$$\frac{\sin x}{x\sin x + \cos x}$$

B.
$$\frac{1}{(x\sin x + \cos x)^2}$$

C.
$$\frac{-x}{\cos x(x\sin x + \cos x)}$$

D.
$$\frac{1}{\sin x(x\cos x + \sin x)}$$

Answer: C

Solution:

Solution:

Question 7

If
$$\int \frac{dx}{(x+1)(x-2)(x-3)} = \frac{1}{k} \log_e \left\{ \frac{|x-3|^3 |x+1|}{(x-2)^4} \right\} + c$$
, then the value of k is

Options:

Solution:

Solution:

Question 8

the expression $\int\limits_0^n [x] dx$, where [x] and {x} are respectively integral and $\int\limits_0^n [x] dx$

fractional part of x and $n \in N$, is equal to

Options:

- A. $\frac{1}{n-1}$
- B. $\frac{1}{n}$
- C. n
- D. n 1

Answer: D

Solution:

Solution:

Question 9

The value $\int_{0}^{1/2} \frac{dx}{\sqrt{1-x^{2n}}}$ is (n \in N)

Options:

- A. less than or equal to $\frac{\pi}{6}$
- B. greater than or equal to 1
- C. less than $\frac{1}{2}$
- D. greater than $\frac{\pi}{6}$

Answer: A

If $I_n = \int_0^{\frac{\pi}{2}} \cos^n x \cos n x dx$, then I_1 , I_2 , I_3 ... are in

Options:

- A. A.P.
- B. G.P.
- C. H.P.

D. no such relation

Answer: D

Solution:

Solution:

Question 11

If $y = \frac{x}{\log_e |cx|}$ is the solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \phi \left(\frac{x}{y}\right)$, then $\phi \left(\frac{x}{y}\right)$ is given by

Options:

- A. $\frac{y^2}{x^2}$
- B. $-\frac{y^2}{x^2}$
- C. $\frac{x^2}{y^2}$
- D. $-\frac{x^2}{v^2}$

Answer: B

Solution:

Solution:

The function $y = e^{kx}$ satisfies $\left(\frac{d^2y}{dx^2} + \frac{dy}{dx}\right) \left(\frac{dy}{dx} - y\right) = y\frac{dy}{dx}$. It is valid for

Options:

A. exactly one value of k.

B. two distinct values of k.

C. three distinct values of k.

D. three distinct values of k.

Answer: C

Solution:

Solution:

Question 13

Given $\frac{d^2y}{dx^2} + \cot x \frac{dy}{dx} + 4y \cos e c^2 x = 0$. Changing the independent variable x to z by the substitution $z = \log \tan \frac{x}{2}$, the equation is changed to

Options:

A.
$$\frac{d^2y}{dz^2} + \frac{3}{y} = 0$$

B.
$$2 \frac{d^2y}{dz^2} + e^y = 0$$

C.
$$\frac{d^2y}{dz^2} - 4y = 0$$

D.
$$\frac{d^2y}{dz^2} + 4y = 0$$

Answer: D

Solution:

Solution:

Question 14

Let f (x) =
$$\begin{cases} x+1 & -1 \le x \le 0 \\ -x & 0 < x \le 1 \end{cases}.$$

Options:

A. f(x) is discontinuous in [-1, 1] and so has no maximum value or minimum value in [-1, 1]

B. f(x) is continuous in [-1, 1] and so has maximum value and minimum value.

C. f(x) is discontinuous in [-1, 1] but still has the maximum and minimum value.

D. f(x) is bounded in [-1, 1] and does not attain maximum or minimum value.

Answer: C

Solution:

Solution:

<u>------</u>

Question 15

A missile is fired from the ground level rises x meters vertically upwards in sec, where $x = 100t - \frac{25}{2}t^2$. The maximum height reached is

Options:

A. 100m

B. 300m

C. 200m

D. 125m

Answer: C

Solution:

Solution:

Question 16

If a hyperbola passes through the point $P(\sqrt{2}, \sqrt{3})$ and has foci at (\pm 2, 0), then the tangent to this hyperbola at P is

Options:

A.
$$y = x\sqrt{6} - \sqrt{3}$$

B.
$$y = x\sqrt{3} - \sqrt{6}$$

C.
$$y = x\sqrt{6} + \sqrt{3}$$

D.
$$y = x\sqrt{3} + \sqrt{6}$$

Answer: A

Solution:

Solution:

Question 17

A, B are fixed points with coordinates (0, a) and (0, b)(a > 0, b > 0). P is variable point (x, 0) referred to rectangular axis. If the angle $\angle APB$ is maximum, then

Options:

A.
$$x^2 = ab$$

B.
$$x^2 = a + b$$

C.
$$x = \frac{1}{ab}$$

D.
$$x = \frac{a+b}{2}$$

Answer: A

Solution:

Solution:

Question 18

The average length of all vertical chords of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, $a \le x \le 2a$, is :

Options:

A.
$$b\{2\sqrt{3} - \ln(2 + \sqrt{3})\}$$

B.
$$b\{3\sqrt{2} + \ln(3 + \sqrt{2})\}$$

C. a
$$\{2\sqrt{5} - \ln(2 + \sqrt{5})\}$$

D.
$$a\{5\sqrt{2} + \ln(5 + \sqrt{2})\}$$

Answer: A

Solution:

The equation of the hyperbola is given by $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

For a given value of x in the interval [a, 2a], the corresponding y values can be calculated from the hyperbola equation as

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

collegebatch.com

Solving for y, we get $y = \pm b \sqrt{\frac{x^2}{a^2} - 1}$.

The length of a vertical chord at a given x value will be the difference of the y values, which gives us: Length of chord $= 2b \sqrt{\frac{x^2}{a^2} - 1}$

Length of chord =
$$2b \sqrt{\frac{x^2}{a^2} - 1}$$

To calculate the average length of all vertical chords from x=a to x=2a, we take the definite integral of this function over that interval, and divide by the length of the interval :

Average length of chord =
$$\frac{1}{2a-a} \int_{a}^{2a} 2b \sqrt{\frac{x^2}{a^2} - 1} dx$$

Simplifying this gives us:

Average length of chord =
$$\frac{2b}{a} \int_{a}^{2a} \sqrt{\frac{x^2}{a^2} - 1} dx$$

$$= \frac{2\int_{a}^{2a} y \, dx}{\int_{a}^{2} dx} = \frac{2\int_{a}^{2a} \frac{b}{a} \sqrt{x^{2} - a^{2}} \, dx}{(x)_{a}^{2a}}$$

$$= \frac{\frac{2b}{a} \int_{a}^{2a} \sqrt{x^{2} - a^{2}} \, dx}{a} = \frac{2b}{a^{2}} \int_{0}^{2a} \sqrt{x^{2} - a^{2}} \, dx$$

$$= \frac{2b}{a^{2}} \left(\frac{x}{3} \sqrt{x^{2} - a^{2}} - \frac{a^{2}}{2} \ln|x + \sqrt{x^{2} - a^{2}}| \right)_{a}^{2a}$$

$$= \frac{2b}{a^{2}} \left[\frac{(2a)\sqrt{4a^{2} - a^{2}}}{2} - \frac{a^{2} \ln|2a + \sqrt{4a^{2} - a^{2}}|}{2} - \frac{a\sqrt{a^{2} - a^{2}}}{2} + \frac{a^{2} \ln|a + \sqrt{a^{2} - a^{2}}|}{2} \right]$$

$$= \frac{2b}{a^{2}} \left[\sqrt{3}a^{2} - \frac{a^{2} \ln|2 + \sqrt{3}a|}{2} + \frac{a^{2} \ln|a|}{2} \right]$$

$$= 2b \left(\sqrt{3} + \frac{\ln\left|\frac{a}{(2 + \sqrt{3})a}\right|}{2} \right)$$

$$= b(2\sqrt{3} - \ln|2 + \sqrt{3}|)$$

Question 19

The value of 'a' for which the scalar triple product formed by the vectors $\vec{\alpha} = \hat{i} + a\hat{j} + widehatk$, $\vec{\beta} = \hat{j} + awidehatk$ and $\vec{\gamma} = a\hat{i} + widehatk$ is maximum, is

Options:

B.
$$-3$$

C.
$$-\frac{1}{\sqrt{3}}$$

D.
$$\frac{1}{\sqrt{3}}$$

Answer: C

Solution:

If the vertices of a square are z_1 , z_2 , z_3 and z_4 taken in the anticlockwise order, then z_3 =

Options:

A.
$$-iz_1 - (1 + i)z_2$$

B.
$$z_1 - (1 + i)z_2$$

C.
$$z_1 + (1 + i)z_2$$

D.
$$-iz_1 + (1 + i)z_2$$

Answer: D

Solution:

Solution:

Question 21

If the n terms a_1 , a_2 ,, a_n are in A.P. with increment r, then the difference between the mean of their squares & the square of their mean is

Options:

A.
$$\frac{r^2\{(n-1)^2-1\}}{12}$$

B.
$$\frac{r^2}{12}$$

C.
$$\frac{r^2(n^2-1)}{12}$$

D.
$$\frac{n^2-1}{12}$$

Answer: C

Solution:

Solution:

If 1, $\log_9(3^{1-x}+2)$, $\log_3(4.3^x-1)$ are in A.P., then x equals Options: A. $\log_3 4$

B. $1 - \log_3 4$

C. $1 - \log_4 3$

D. log_43

Answer: B

Solution:

Solution:

Question 23

Reflection of the line $\overline{az} + a\overline{z} = 0$ in the real axis is given by:

Options:

A. $az + \overline{az} = 0$

B. $\overline{az} - \overline{az} = 0$

C. $az - \overline{az} = 0$

D. $\frac{a}{z} + \frac{\overline{a}}{z} = 0$

Answer: A

Solution:

Solution:

Question 24

If one root of $\mathbf{x}^2 + p\mathbf{x} - \mathbf{q}^2 = \mathbf{0}$, p and q are real, be less than 2 and other be greater than 2 , then

Options:

A. $4 + 2p + q^2 > 0$

B. $4 + 2p + q^2 < 0$

C. $4 + 2p - q^2 > 0$

D. $4 + 2p - q^2 < 0$	collegebatch.com
Answer: D	- S COILEGE DEICE I.com
Solution:	
Solution:	
Question 25	
The number of ways in which the letters of arranged without changing the order of the	
Options:	
A. $6! \times 3!$	
B. $\frac{8!}{3}$	
C. 6! × 3	
D. $\frac{8!}{3!}$	
Answer: D	
Solution:	
Solution:	
Question 26	
n objects are distributed at random amon ways in which this can be done so that at any object is	-
Options:	
A. n! – n	
B. $n^n - n$	
C. $n^n - n^2$	
D. $n^n - n!$	

Answer: D

Solution:

Let $P(n) = 3^{2n+1} + 2^{n+2}$ where $n \in N$. Then

Options:

- A. P(n) is not divisible by any prime integer.
- B. there exists prime integer which divides P(n).
- C. P(n) is divisible by 5 for all $n \in N$.
- D. P(n) is divisible by 3 for all $n \in N$.

Answer: B

Solution:

So	luti	on	:
_		•	-

Question 28

Let A be a set containing n elements. A subset P of A is chosen, and the set A is reconstructed by replacing the elements of P. A subset Q of A is chosen again. The number of ways of choosing P and Q such that Q contains just one element more than P is

Options:

- A. ${}^{2n}C_{n-1}$
- B. $^{2n}C_n$
- C. $^{2n}C_{n+2}$
- D. 2^{2n+1}

Answer: A

Solution:

Solution:

Question 29

Let A and B are orthogonal matrices and $\det A + \det B = 0$. Then

Options:

Α.	Α	+	В	is	sino	ular
∠1.	$\boldsymbol{\tau}$		$\boldsymbol{\mathcal{L}}$	IJ	SILLO	uiui

collegebatch.com

B. A + B is non-singular

C. A + B is orthogonal

D. A + B is skew symmetric

Answer: A

Solution:

Solution:

Question 30

Let
$$A = \begin{pmatrix} 2 & 0 & 3 \\ 4 & 7 & 11 \\ 5 & 4 & 8 \end{pmatrix}$$
. Then

Options:

A. det A is divisible by 11

B. det A is not divisible by 11

 $C. \det A = 0$

D. A is orthogonal matrix

Answer: A

Solution:

Solution:

Question 31

If the matrix M_r is given by $M_r = \begin{pmatrix} r & r-1 \\ r-1 & r \end{pmatrix}$ for r = 1, 2, 3, ... then $det(M_1) + det(M_2) + ... + det(M_{2008}) =$

Options:

A. 2007

B. 2008

 $C. (2008)^2$

Answer: C

Solution:

Solution:

Question 32

Let α , β be the roots of the equation $ax^2 + bx + c = 0$, a, b, c real and

$$s_n = \alpha^n + \beta^n$$
 and

$$\mathbf{s_n} = \boldsymbol{\alpha^n} + \boldsymbol{\beta^n} \text{ and}$$

$$\begin{vmatrix} 3 & 1 + s_1 & 1 + s_2 \\ 1 + s_1 & 1 + s_2 & 1 + s_3 \\ 1 + s_2 & 1 + s_3 & 1 + s_4 \end{vmatrix} = \mathbf{k} \frac{(a+b+c)^2}{a^4} \text{ then } \mathbf{k} =$$

=
$$\mathbf{k} \frac{(\mathbf{a} + \mathbf{b} + \mathbf{c})^2}{\mathbf{a}^4}$$
 then \mathbf{k} =

Options:

A.
$$b^2 - 4ac$$

$$B. b^2 + 4ac$$

$$C. b^2 + 2ac$$

D.
$$4ac - b^2$$

Answer: A

Solution:

Solution:

Question 33

Let A, B, C are subsets of set X. Then consider the validity of the following set theoretic statement:

Options:

A. A
$$\cup$$
 (B\C) = (A \cup B)\(A \cup C)

B.
$$(A\B)\C = A\C \cup C)$$

C.
$$(A \cup B)\backslash A = A\backslash B$$

D.
$$A\C = B\C$$

Answer: B

Let X be a nonvoid set. If ρ_1 and ρ_2 be the transitive relations on X, then (o denotes the composition of relations)

Options:

- A. $\rho_1 \circ \rho_2$ is transitive relation
- B. $\rho_1\,\circ\,\rho_2$ is not transitive relation
- C. $\rho_1 \circ \rho_2$ is equivalence relation
- D. ρ_1 ρ_2 is not any relation on X

Answer: C

Solution:

Solution:

Question 35

Let A and B are two independent events. The probability that both A and B happen is $\frac{1}{12}$ and probability that neither A and B happen is $\frac{1}{2}$. Then

Options:

A.
$$P(A) = \frac{1}{3}$$
, $P(B) = \frac{1}{4}$

B.
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{1}{6}$

C.
$$P(A) = \frac{1}{6}$$
, $P(B) = \frac{1}{2}$

D.
$$P(A) = \frac{2}{3}$$
, $P(B) = \frac{1}{8}$

Answer: A

Solution:

Solution:

Let S be the sample space of the random experiment of throwing simultaneously two unbiased dice and $E_k = \{(a, b) \in S : ab = k\}$. If $p_k = P(E_k)$, then the correct among the following is :
Options:
A. $p_1 < p_{10} < p_4$
B. $p_1 < p_8 < p_{14}$
C. $p_1 < p_8 < p_{17}$
D. $p_1 < p_{16} < p_5$
Answer: A
Solution:
Solution:
Question 37
If $\frac{1}{6}$ sin θ , cos θ , tan θ are in G.P, then the solution set of θ is (Here $n \in N$)
Options:
A. $2n\pi \pm \frac{\pi}{6}$
B. $2n\pi \pm \frac{\pi}{3}$
C. $n\pi + (-1)^n \frac{\pi}{3}$
D. npi + fracpi 3
Answer: B
Solution:
Solution:

The equation $r^2 \cos^2 \left(\theta - \frac{\pi}{3} \right) = 2$ represents

Options:

A. a parabola

B. a hyperbola	collegebatch.com
C. a circle	1 — S College Delect I.com
D. a pair of straight lines	
Answer: D	
Solution:	
Solution:	
Question 39	
Let A be the point (0, 4) in the xy-plane a Let L be the midpoint of AB and let the p meet the y-axis M . Let N be the midpoin	erpendicular bisector of AB
Options:	
A. a circle	
B. a parabola	
C. a straight line	
D. a hyperbola	
Answer: B	
Solution:	
Solution:	
Question 40	
If $4a^2 + 9b^2 - c^2 + 12ab = 0$, then the fam $ax + by + c = 0$ is concurrent at	ily of straight lines
Options:	

A. (2, 3) or (-2, -3)

B. (-2, 3) or (2, 3)

C. (3, 2) or (-3, 2)

D. (-3, 2) or (2, 3)

Answer: A

The straight lines x + 2y - 9 = 0, 3x + 5y - 5 = 0 and ax + by - 1 = 0 are concurrent if the straight line 35x - 22y + 1 = 0 passes through the pointThe straight lines x + 2y - 9 = 0, 3x + 5y - 5 = 0 and ax + by - 1 = 0 are concurrent if the straight line 35x - 22y + 1 = 0 passes through the point

Options:

- A. (-a, -b)
- B. (a, -b)
- C. (-a, b)
- D. (a, b)

Answer: D

Solution:

Solution:

Question 42

ABC is an isosceles triangle with an inscribed circle with centre $\bf 0$. Let P be the midpoint of BC. If $\bf AB = AC = 15$ and $\bf BC = 10$, then OP equals

Options:

- A. $\frac{\sqrt{5}}{\sqrt{2}}$ unit
- B. $\frac{5}{\sqrt{2}}$ unit
- C. $2\sqrt{5}$ unit
- D. $5\sqrt{2}$ unit

Answer: B

Solution:

Solution:

P divides the line segment OQ internally in the ratio 1 : 3, then the locus of P is:
Options:
$A. x^2 = y$
$3. y^2 = x$
$2x^2 = 2x$
$0. x^2 = 2y$
Answer: D
Solution:
Solution:
Question 44
The tangent at point (a cos θ , bsin θ), $0 < \theta < \frac{\pi}{2}$, to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meets the x-axis at T and y-axis at T_1 . Then the value of min $0 < \theta < \frac{\pi}{2}$
Options:
A. ab
3. 2ab
C. 0
D. 1
Answer: B
Solution:
Solution:
Question 45

Let A(2 sec θ , 3 tan θ) and B(2 sec ϕ , 3 tan ϕ) where $\theta + \phi = \frac{\pi}{2}$ be two points on the hyperbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$. If (α, β) is the point of intersection of normals to the hyperbola at A and B, then β is equal to

Options: collegebatch.com A. $\frac{12}{3}$ B. $\frac{13}{3}$ C. $-\frac{12}{3}$ D. $-\frac{13}{3}$ **Answer: D Solution: Solution: Question 46** If the lines joining the focii of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b, and an extremity of its minor axis is inclined at an angle 60°, then the eccentricity of the ellipse is **Options:** A. $\frac{\sqrt{3}}{2}$ C. $\frac{\sqrt{7}}{3}$ D. $\frac{1}{\sqrt{3}}$ **Answer: B Solution:**

Question 47

If the distance between the plane $\alpha x - 2y + z = k$ and the plane containing the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ is $\sqrt{6}$, then $|\mathbf{k}|$ is

Options:

A. 36	collegebatch.com
B. 12	1 — S College Detect I.com
C. 6	
D. $2\sqrt{3}$	
Answer: C	
Solution:	
Solution:	
Question 48	
The angle between a normal to the plane 2x axis is	x - y + 2z - 1 = 0 and the X-
Options:	
A. $\cos^{-1} \frac{2}{3}$	
B. $\cos^{-1} \frac{1}{5}$	
C. $\cos^{-1} \frac{3}{4}$	
D. $\cos^{-1} \frac{1}{3}$	
Answer: A	
Solution:	
Solution:	
Question 49	

Let $f(x) = [x^2] \sin \pi x$, x > 0. Then

Options:

- A. f is discontinuous everywhere.
- B. f is continuous everywhere.
- C. f is continuous at only those points which are perfect squares.
- D. f is continuous at only those points which are not perfect squares.

Answer: B

Solution:	collegebatch.com
Solution:	
Question 50	
If $y = \log^n x$, where $\log^n means$ $x \log x \log^2 x \log^3 x \dots \log^{n-1} x$	$\log_e \log_e \log_e \dots$ (repeated n times), then $\log^n x \frac{dy}{dx}$ is equal to
Options:	
A. log x	
B. x	
C. 1	
D. log ⁿ x	
Answer: D	
Solution:	
Solution:	
Question 51	
$\int\limits_{0}^{2\pi}\theta\sin^{6}\theta\cos\thetad\thetaisequalto$	
Options:	
A. $\frac{\pi}{16}$	
B. $\frac{3\pi}{16}$	
C. $\frac{16\pi}{3}$	
D. 0	
Answer: D	
Solution:	
Solution:	
Question 52	

Options:
A. k
Bk
Ck^2
D. k^2
Answer: C
Solution:
Solution:
Question 53
In the interval (-2 π , 0), the function f (x) = sin $\left(\frac{1}{x^3}\right)$.
Options:
A. never changes sign.
B. changes sign only once.
C. changes sign more than once but finitely many times.
D. changes sign infinitely many times.
Answer: D
Solution:
Solution:
Question 54
The average ordinate of $y = \sin x$ over $[0, \pi]$ is :
Options:
A. $\frac{2}{\pi}$
B. $\frac{3}{\pi}$

collegebatch.com

If $x = \sin \theta$ and $y = \sin k\theta$, then $(1 - x^2)y_2 - xy_1 - \alpha y = 0$, for $\alpha =$

Answer: A

collegebatch.com

Solution:

Solution:

The average value of a function f(x) over an interval [a, b] is given by the formula:

Average =
$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

In this case, we want to find the average value of the function $y = \sin(x)$ over the interval $[0, \pi]$. We can use the formula above, with $f(x) = \sin(x)$, a = 0, and $b = \pi$:

Average =
$$\frac{1}{\pi - 0} \int_{0}^{\pi} \sin(x) dx$$

The integral of $\sin(x)$ from 0 to π is $-\cos(\pi) + \cos(0) = -(-1) + 1 = 2$.

So, the average value is :

Average =
$$\frac{1}{\pi} \cdot 2 = \frac{2}{\pi}$$

So, the correct answer is Option A, $\frac{2}{\pi}$.

Question 55

The portion of the tangent to the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, a > 0 at any point of it, intercepted between the axes

Options:

A. varies as abscissa

B. varies as ordinate

C. is constant

D. varies as the product of abscissa and ordinate

Answer: C

Solution:

Solution:

.....

Question 56

If the volume of the parallelopiped with $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ as conterminous edges is 9 cu. units, then the volume of the parallelopiped with $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})$, $(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})$, and $(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})$ as conterminous edges is

Options:

A. 9 cu. units

B. 729 cu. units	collegebatch.com
C. 81 cu. units	-g collegebetter i.com
D. 243 cu. units	
Answer: C	
Solution:	
Solution:	
Question 57	
Given $f(x) = e^{\sin x} + e^{\cos x}$. The global maximum value	of f(x)
Options:	
A. does not exist.	
B. exists at a point in $\left(0, \frac{\pi}{2}\right)$ and its value is $2e^{\frac{1}{\sqrt{2}}}$.	
C. exists at infinitely many points.	
D. exists at $x = 0$ only.	
Answer: B	
Solution:	
Solution:	
Question 58	
Consider a quadratic equation $ax^2 + 2bx + c = 0$ whe positive real numbers. If the equation has no real rother following is true?	
Ontions	

A. a, b, c cannot be in A.P. or H.P. but can be in G.P.

B. a, b, c cannot be in G.P. or H.P. but can be in A.P.

C. a, b, c cannot be in A.P. or G.P. but can be in H.P.

D. a, b, c cannot be in A.P., G.P. or H.P.

Answer: C

Let a_1 , a_2 , a_3 , ..., a_n be positive real numbers. Then the minimum value of $\frac{a_1}{a_2} + \frac{a_2}{a_3} + \ldots + \frac{a_n}{a_1}$ is

Options:

- A. 1
- B. n
- C. ⁿC₂
- D. 2

Answer: B

Solution:

Solution:

Question 60

Let
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ and $P \begin{pmatrix} 0 & 1 & 0 \\ x & 0 & 0 \\ 0 & 0 & y \end{pmatrix}$ be an

orthogonal matrix such that $B = PAP^{-1}$ holds. Then

Options:

A.
$$x = 1 = y$$

B.
$$x = 1$$
, $y = 0$

C.
$$x = 0$$
, $y = 1$

D.
$$x = -1$$
, $y = 0$

Answer: A

Solution:

Solution:

Let ρ be a relation defined on set of natural numbers N, as $\rho = \{(x, y) \in N \times N : 2x + y = 4\}$. Then domain A and range B are

A. $A \subset \{x \in N : 1 \le x \le 20\}$ and $B \subset \{y \in N : 1 \le y \le 39\}$

B. $A = \{x \in N : 1 \le x \le 15\}$ and $B = \{y \in N : 1 \le y \le 30\}$

 $C. A \equiv N, B = Q$

D. A = Q, B = Q

Answer: A

Solution:

Solution:

Question 62

From the focus of the parabola $y^2 = 12x$, a ray of light is directed in a direction making an angle $\tan^{-1}\frac{3}{4}$ with x-axis. Then the equation of the line along which the reflected ray leaves the parabola is

Options:

A. y = 2

B. y = 18

C. y = 9

D. y = 36

Answer: B

Solution:

Solution:

Question 63

The locus of points (x, y) in the plane satisfying $\sin^2 x + \sin^2 y = 1$ consists of

Options:

A. a circle centered at origin

B. infinitely many circles that are all centered at the origin

C. infinitely many lines with slope \pm 1

D. finitely many lines with slope \pm 1

Answer: C

Solution:

Sol	uti	on:	

Question 64

The value of

$$\lim_{n \to \infty} \left[\left(\frac{1}{2 \cdot 3} + \frac{1}{2^2 \cdot 3} \right) + \left(\frac{1}{2^2 \cdot 3^2} + \frac{1}{2^3 \cdot 3^2} \right) + \dots + \left(\frac{2}{2^n \cdot 3^n} + \frac{1}{2^{n+1} \cdot 3n} \right) \right].$$
is

Options:

- A. $\frac{3}{8}$
- B. $\frac{3}{10}$
- C. $\frac{3}{14}$
- D. $\frac{3}{16}$

Answer: B

Solution:

Solution:

Question 65

The family of curves $y = e^{a \sin x}$, where 'a' is arbitrary constant, is represented by the differential equation

Options:

A.
$$y \log y = \tan x \frac{dy}{dx}$$

B.
$$y \log x = \cot x \frac{dy}{dx}$$

$C. \log y = \tan x$	<u>d y</u>
or rog j tarrir	dу

D.	logy	=	cotx	$\frac{dy}{dx}$
----	------	---	------	-----------------

Answer: A

Solution:

Question 66

Let f be a non-negative function defined on $\left[0, \frac{\pi}{2} \right]$. If

 $\int_{0}^{x} (f'(t) - \sin 2t) dt = \int_{x}^{0} f(t) \tan t dt, f(0) = 1 \text{ then } \int_{0}^{\frac{\pi}{2}} f(x) dx \text{ is}$

Options:

A. 3

B. 3 - $\frac{\pi}{2}$

C. 3 + $\frac{\pi}{2}$

D. $\frac{\pi}{2}$

Answer: B

Solution:

_	olı	 : -	 _

Question 67

A balloon starting from rest is ascending from ground with uniform acceleration of $4\,\mathrm{ft/sec^2}$. At the end of 5 sec, a stone is dropped from it. If T be the time to reach the stone to the ground and H be the height of the balloon when the stone reaches the ground, then

Options:

A.
$$T = 6 \sec$$

B.
$$H = 112.5 \, ft$$

C.
$$T = 5/2 sec$$

D. 225 ft

Solution:

Solution:

Question 68

If f (x) =
$$3^{3}\sqrt{x^{2}} - x^{2}$$
, then

Options:

- A. f has no extrema.
- B. f is maximum at two points x = 1 and x = -1.
- C. f is minimum at x = 0.
- D. f has maximum at x = 1 only.

Answer:B, C

Solution:

Solution:

Question 69

If \mathbf{z}_1 and \mathbf{z}_2 are two complex numbers satisfying the equation

$$\left| \frac{z_1 + z_2}{z_1 - z_2} \right| = 1$$
, then $\frac{z_1}{z_2}$ may be

Options:

- A. real positive
- B. real negative
- C. zero
- D. purely imaginary

Answer: C

Solution:

Solution:

A letter lock consists of three rings with 15 different letters. If N denotes the number of ways in which it is possible to make unsuccessful attempts to open the lock, then

Options:

Α	482	divides	N

- B. N is the product of two distinct prime numbers.
- C. N is the product of three distinct prime numbers.
- D. 16 divides N.

Answer: A, B, C

Solution:

Solution:		

Question 71

If R and R¹ are equivalence relations on a set A, then so are the relations

Options:

- $A. R^{-1}$
- B. R u R¹
- C. $R \cap R^1$
- D. All of these

Answer: A, C

Solution:

Solution:

Question 72

Let f be a strictly decreasing function defined on R such that f(x) > 0, $\forall x \in R$. Let $\frac{x^2}{f(a^2 + 5a + 3)} + \frac{y^2}{f(a + 15)} = 1$ be an ellipse with major axis along the y-axis. The value of 'a' can lie in the interval (s)

Options:

A. $(-\infty, -6)$	collegebatch.com
B. (-6, 2)	a de la come
C. (2, ∞)	
D. $(-\infty, \infty)$	
Answer: A, C	
Solution:	
Solution:	
Question 73	
	le parallel to the line $y = 2x$ and vertices A, and $x = -1$ respectively. The coordinate of
Options:	
A. (3, 8)	
B. (-3, 8)	
C. (-3, -1)	
D. (3, -1)	
Answer: A, C	
Solution:	
Solution:	
Question 74	
Let $f(x) = x^m$, m being a non equality $f'(a + b) = f'(a) + f'(a)$	-negative integer. The value of m so that the b) is valid for all a, b > 0 is
Options:	
A. 0	
B. 1	
C. 2	
D. 3	

Answer: A, C

_	_		_		
\boldsymbol{c}	_ 1	ut	∟ • -		_
•	"			۱n	•
	.,,			,,,	

Solution:

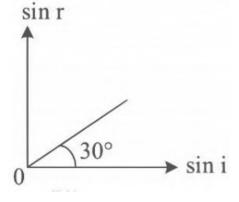
Question 75

Which of the following statements are true?

Options:

- A. If f(x) be continuous and periodic with periodicity T, then $I = \int_{a}^{a+T} f(x) dx$ depend on 'a'.
- B. If f(x) be continuous and periodic with periodicity T, then $I = \int_a^{a+T} f(x) dx$ does not depend on 'a'.
- C. Let $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$, then f is periodic of the periodicity T only if T is rational.
- D. f defined in (C) is periodic for all T.

Answer: B


Solution:

Solution:

Physics

Question 41

A ray of monochromatic light is incident on the plane surface of separation between two media X and Y with angle of incidence ' i ' in medium X and angle of refraction ' r ' in medium Y. The given graph shows the relation between sin i and sin r. If V_X and V_Y are the velocities of the ray in media X and Y respectively, then which of the following is true?

Options:

A.
$$V_X = \frac{1}{\sqrt{3}}V_Y$$

B.
$$V_x = \sqrt{3}V_y$$

- C. Total internal reflection can happen when the light is incident in medium X.
- D. $v_X = \sqrt{3}v_Y$, where v_X and v_Y are frequencies of the light in medium X and Y respectively.

Answer: B

Solution:

Solution:

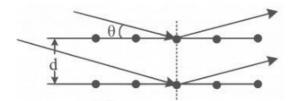
Question 42

Three identical convex lenses each of focal length f are placed in a straight line separated by a distance f from each other. An object is located at f / 2 in front of the leftmost lens. Then,

Options:

- A. Final image will be at f / 2 behind the rightmost lens and its magnification will be -1.
- B. Final image will be at f / 2 behind the rightmost lens and its magnification will be +1
- C. Final image will be at f behind the rightmost lens and its magnification will be -1 .
- D. Final image will be at f behind the rightmost lens and its magnification will be ± 1 .

Answer: A


Solution:

Solution:

Question 43

X-rays of wavelength λ gets reflected from parallel planes of atoms in a crystal with spacing d between two planes as shown in the figure. If the two reflected beams interfere constructively, then the condition for maxima will be, (n is the order of interference fringe)

Options:

- A. $d \tan \theta = n\lambda$
- B. $d\sin\theta = n\lambda$
- C. $2d\cos\theta = n\lambda$
- D. $2d\sin\theta = n\lambda$

Answer: D

Solution:

Solution:

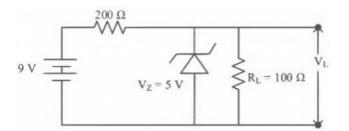
Question 44

If the potential energy of a hydrogen atom in the first excited state is assumed to be zero, then the total energy of $n = \infty$ state is,

Options:

- A. 3.4 eV
- B. 6.8 eV
- C. 0
- D. ∞

Answer: A


Solution:

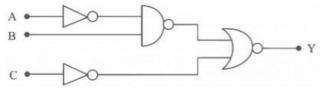
Solution:

Question 45

In the given circuit, find the voltage drop V $_{\rm L}$ in the load resistance R $_{\rm L}$.

Options:

- A. 5V
- B. 3V
- C. 9V
- D. 6V


Answer: B

Solution:

Solution:

Question 46

Consider the logic circuit with inputs A, B, C and output Y. How many combinations of A, B and C gives the output Y = 0?

Options:

Λ	O
Α.	റ

B. 5

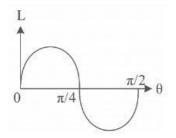
C. 7

D. 1

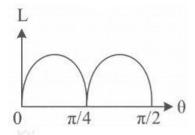
Answer: C

Solution:

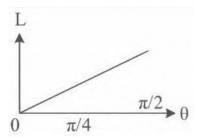
Solution:

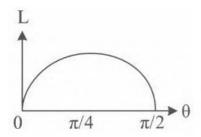

Question 47

A particle of mass m is projected at a velocity u, making an angle $\boldsymbol{\theta}$ with


the horizontal (x-axis). If the angle of projection θ is varied keeping all other parameters same, then magnitude of angular momentum (L) at its maximum height about the point of projection varies with θ as,

Options:


A.


В.

C.

D.

Answer: D

Solution:

Solution:

Question 48

A body of mass 2 kg moves in a horizontal circular path of radius 5m. At

an instant, its speed is $2\sqrt{5}$ m / s and is increasing at the rate of 3 m / s ² . The magnitude of force acting on the body at that instant is,
Options:
A. 6N
B. 8N
C. 14N
D. 10N
Answer: D
Solution:
Solution:
Question 49
In an experiment, the length of an object is measured to be 6.50 cm. This measured value can be written as 0.0650m. The number of significant figures on 0.0650m is
Options:
A. 3
B. 4
C. 2
D. 5
Answer: A
Solution:
Solution:
Question 50
A mouse of mass m jumps on the outside edge of a rotating ceiling fan of moment of inertia I and radius R. The fractional loss of angular velocity of the fan as a result is,
Options:

A. $\frac{mR^2}{I + mR^2}$

collegebatch.com

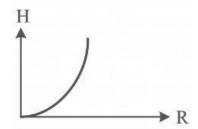
R		I	
ט.	Ī +	- mR ²	

- C. $\frac{I mR^2}{I}$
- D. $\frac{I mR^2}{I + mR^2}$

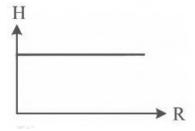
Answer: A

Solution:

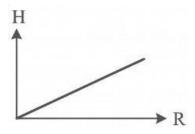
Solution

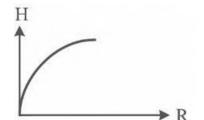


Question 51


Acceleration due to gravity at a height H from the surface of a planet is the same as that at a depth of H below the surface. If R be the radius of the planet, then H vs. R graph for different planets will be,

Options:


A.


В.

C.

D.

Answer: C

Solution:

Solution:

Question 52

A uniform rope of length 4m and mass 0.4 kg is held on a frictionless table in such a way that 0.6m of the rope is hanging over the edge. The work done to pull the hanging part of the rope on to the table is, (Assume $g = 10m / s^2$)

Options:

A. 0.36J

B. 0.24J

C. 0.12J

D. 0.18J

Answer: D

Solution:

Solution:

Question 53

The displacement of a plane progressive wave in a medium, travelling towards positive x-axis with velocity 4m / s at t = 0 is given by

 $y = 3\sin 2\pi \left(-\frac{x}{3}\right)$. Then the expression for the displacement at a later time t = 4 sec will be

Options:

A.
$$y = 3\sin 2\pi \left(-\frac{x-16}{3}\right)$$

B.
$$y = 3\sin 2\pi \left(\frac{-x-16}{3}\right)$$

C.
$$y = 3\sin 2\pi \left(\frac{-x+1}{3}\right)$$

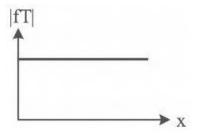
D.
$$y = 3\sin 2\pi \left(\frac{-x-1}{3}\right)$$

Answer: A

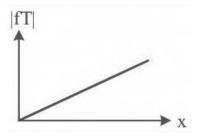
Solution:

Solution:

- 1. The general equation of a wave propagating in one dimension can be expressed as $y = Asin (\omega t kx + \phi)$, where A is the amplitude, ω is the angular frequency, k is the wave number, x is the position, t is the time, and ϕ is the phase constant
- 2. The given wave equation is $y=3\sin 2\pi\left(-\frac{x}{3}\right)$. This can be rewritten as $y=3\sin\left(-2\pi\frac{x}{3}\right)$, which matches the form $y=A\sin\left(\omega t-kx\right)$ where ωt is zero (i.e., t=0), A is 3 and k is $-\frac{2\pi}{3}$.
- 3. The negative sign of k indicates that the wave is moving in the negative x-direction, but the problem states that the wave is moving in the positive x-direction. Hence, we should take k as positive, i.e., $k = \frac{2\pi}{3}$.
- 4. The speed of the wave v is given by $v=\frac{\omega}{k}$. From the problem, we know that v=4m / s. By substituting these values, we can solve for ω : $4=\frac{\omega}{2\pi/3}$ which gives $\omega=\frac{8\pi}{3}$.
- 5. So, the wave equation at any time t can be written as $y = 3\sin\left[\frac{8\pi}{3}t \frac{2\pi}{3}x\right]$.
- 6. Now, we want to find the wave equation at t=4 s. Substituting t=4 into the equation gives $y=3sin\left[\frac{8\pi}{3}\times 4-\frac{2\pi}{3}x\right]$.
- 7. Simplifying the argument of the sine function, we get $y = 3\sin 2\pi \left(\frac{-x+16}{3} \right)$.
- 8. Rearranging the argument of the sine function again, we get $y=3\sin 2\pi \left(-\frac{x-16}{3}\right)$.



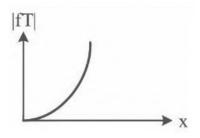
Question 54


In a simple harmonic motion, let f be the acceleration and t be the time period. If x denotes the displacement, then |fT| vs. x graph will look like,

Options:

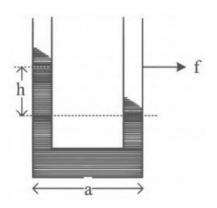
A.

В.



C.

D.


Answer: B

Solution:

Solution:

Question 55

As shown in the figure, a liquid is at same levels in two arms of a U-tube of uniform cross-section when at rest. If the U-tube moves with an acceleration 'f' towards right, the difference between liquid heights between two arms of the U tube will be, (acceleration due to gravity = g)

Options:

A.	$\frac{f}{\sigma}$
	α

B. $\frac{g}{f}a$

C. a

D. 0

Answer: A

Solution:

3	U	ı	u	U	U	П	ı	Ē

Question 56

Six molecules of an ideal gas have velocities 1, 3, 5, 5, 6 and 5m / s respectively. At any given temperature, if \overline{V} and V_{rms} represent average and rms speed of the molecules, then

Options:

A.
$$\overline{V} = 5 \text{m} / \text{s}$$

B.
$$V_{rms} > \overline{V}$$

C.
$$V_{rms}^{2} < \overline{V}^{2}$$

D.
$$V_{rms} = \overline{V}$$

Answer: B

Solution:

Solution:

Question 57

As shown in the figure, a pump is designed as horizontal cylinder with a

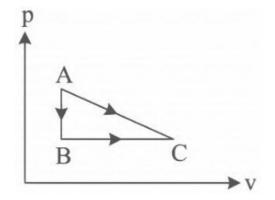
piston having area A and an outlet orifice having an area ' a '. The piston moves with a constant velocity under the action of force F . If the density of the liquid is ρ , then the speed of the liquid emerging from the orifice is, (assume A > a)

Options:

A.
$$\sqrt{\frac{F}{\rho A}}$$

B.
$$\frac{a}{A}\sqrt{\frac{F}{\rho A}}$$

C.
$$\sqrt{\frac{2F}{\rho A}}$$


D.
$$\frac{A}{a}\sqrt{\frac{2F}{\rho A}}$$

Answer: C

Solution:

Question 58

A given quantity of gas is taken from A to C in two ways; a) directly from $A \to C$ along a straight line and b) in two steps, from $A \to B$ and then from $B \to C$. Work done and heat absorbed along the direct path $A \to C$ is 200J and 280J respectively.

If the work done along $A \rightarrow B \rightarrow C$ is 80J, then heat absorbed along this path is,

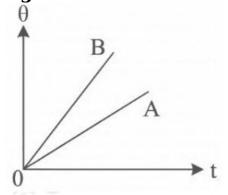
Options:

A. 80J

B. 0

C. 160J

Answer: C

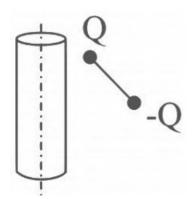


Solution:

Question 59

Two substances A and B of same mass are heated at constant rate. The variation of temperature θ of the substances with time t is shown in the figure. Choose the correct statement.

Options:


- A. Specific heat of A is greater than that of B.
- B. Specific heat of B is greater than that of A.
- C. Both have same specific heat.
- D. None of the above is true.

Answer: A

Solution:

Solution:

Question 60

Consider a positively charged infinite cylinder with uniform volume charge density rho > 0. An electric dipole consisting of +Q and -Q charges attached to opposite ends of a massless rod is oriented as shown in the figure. At the instant as shown in the figure, the dipole will experience,

Options:

- A. a force to the left and no torque.
- B. a force to the right and a clockwise torque.
- C. a force to the right and a counter clockwise torque.
- D. no force but only a clockwise torque.

Answer: B

Solution:

3	OI	u	τı	o	n	:	

Question 61

A thin glass rod is bent in a semicircle of radius R. A charge is nonuniformly distributed along the rod with a linear charge density $\lambda = \lambda_0 \sin\theta$ (λ_0 is a positive constant). The electric field at the centre P of the semicircle is,

Options:

A.
$$-\frac{\lambda_o}{8\pi\epsilon_o R}\hat{j}$$

B.
$$\frac{\lambda_o}{8\pi\epsilon_0 R}\hat{j}$$

C.
$$\frac{\lambda_0}{8\pi\epsilon_0 R}\hat{i}$$

$$D. - \frac{\lambda_0}{8\pi\epsilon_0 R} \hat{i}$$

Answer: A

Solution:

Solution:

12μC and 6μC charges are given to the two conducting plates having
same cross-sectional area and placed face to face close to each other as
shown in the figure. The resulting charge distribution in μC on surfaces
A, B, C and D are respectively,

Options :

A. 9, 3, -3, 9

B. 3, 9, -9, 3

C. 6, 6, -6, 12

D. 6, 6, 3, 3

Answer: A

Solution:

Solution:

Out side face of each plate, charge = $\frac{Q_1+Q_2}{2}=9$ Charge on $B=Q_1-9=3$ Charge on $C=Q_2-9=-3$

Question 63

A wire carrying a steady current I is kept in the x-y plane along the curve $y=Asin\left(\frac{2\pi}{\lambda}x\right)$. A magnetic field B exists in the z-direction. The magnitude of the magnetic force in the portion of the wire between x=0 and $x=\lambda$ is

Options:

A. 0

Β. 21λΒ

C. l\u00e4B

D. $l\lambda B/2$

Answer: C

Solution:

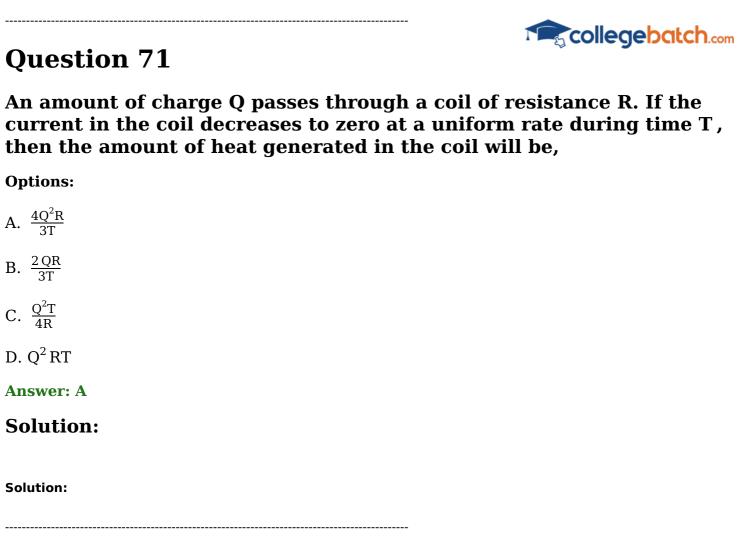
Solution:

Question 64

The figure represents two equipotential lines in x-y plane for an electric

field. The x-component $\mathbf{E}_{\mathbf{x}}$ of the electric field in space between these equipotential lines is,
Options:
A. 100V/m
3100V/m
C. 200V/m
O200V/m
Answer: B
Solution:
Solution:
Question 65
An electric dipole of dipole moment \vec{p} is placed at the origin of the coordinate system along the z-axis. The amount of work required to move a charge 'q' from the point (a, 0, 0) to the point (0, 0, a) is,
Options:
$\frac{pq}{4\pi\epsilon_0^a}$
3. 0
$C. \frac{-pq}{4\pi\epsilon_0 a^2}$
$\frac{pq}{4\pi\epsilon_0 a^2}$
Answer: D
Solution:
Solution:
Question 66
The electric field of a plane electromagnetic wave of wave number k and
angular frequency ω is given $\vec{E} = E_0(\hat{i} + \hat{j})$ sin (kz – ωt). Which of the

following gives the direction of the associated magnetic field \vec{B} ? Options:


A. k	collegebatch.com
$B\hat{i} + \hat{j}$	· — Conegeration
$C\hat{i} - \hat{j}$	
D. $\hat{i} - \hat{k}$	
Answer: B	
Solution:	
Solution:	
Question 67	
A charged particle in a uniform magnetic fie	eld $\vec{B} = \mathbf{B_0}^{\hat{k}}$ starts moving
from the origin with velocity $v=3\hat{i}+4\hat{k}m$ / particle and the time t at which it reaches 2	
Options:	
A. Circular path 1/2 sec.	
B. Helical path, 1/2 sec .	
C. Circular path, 2/3 sec.	
D. Helidatpath, 2/3 sec.	
Answer: B	
Solution:	
Solution:	

In an experiment on a circuit as shown in the figure, the voltmeter shows 8V reading. The resistance of the voltmeter is,

Options:

- Α. 20Ω
- Β. 320Ω
- C. 160Ω
- D. $1.44k\Omega$

Answer: C	collegebatch.com
Solution:	- Eg conc ge Delect I.com
Solution:	
Question 69	
An interference pattern is obtained intensity ratio n : 1. The ratio $\frac{I_{max}}{I_{max}}$	
Options:	
A. $n = 1$	
B. $n = 2$	
C. $n = 3$	
D. $n = 4$	
Answer: A	
Solution:	
Solution:	
Question 70	·
the plane of the paper. The current	rrent carrying conductor, both lying on nt is flowing through the conductor in ent in the loop is clockwise as shown in e is,
Options:	
A. time dependent and downward.	
B. steady and upward.	
C. time dependent and upward.	
D. An alternating current.	
Answer: C	
Solution:	
Solution:	

A modified gravitational potential is given by $V = -\frac{GM}{r} + \frac{A}{r^2}$. If the constant A is expressed in terms of gravitational constant (G), mass (M) and velocity of light (c), then from dimensional analysis, A is,

Options:

٨	G^2M	2
л.	\mathbf{c}^2	

B.
$$\frac{GM}{c^2}$$

C.
$$\frac{1}{C^2}$$

D. Dimensionless

Answer: A

Solution:

Solution:

There are n elastic balls placed on a smooth horizontal plane. The masses of the balls are m, $\frac{m}{2}$, $\frac{m}{2^2}$, ... $\frac{m}{2^{n-1}}$ respectively. If the first ball hits the second ball with velocity $\mathbf{v_0}$, then the velocity of the n th ball will be,

A.	$\frac{4}{2}$ V ₀
	'X'(

B.
$$\left(\frac{4}{3}\right)^n v_0$$

C.
$$\left(\frac{4}{3}\right)^{n-1}v_0$$

 $D. v_0$

Answer: C

Solution:

Solution:

Question 74

An earth's satellite near the surface of the earth takes about 90 min per revolution. A satellite orbiting the moon also takes about 90 min per revolution. Then which of the following is true? [where ρ_m is density of the moon and ρ_e is density of the earth.]

Options:

A.
$$\rho_{\rm m} < \rho_{\rm e}$$

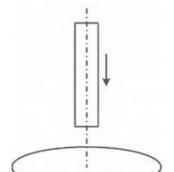
B.
$$\rho_{\rm m} > \rho_{\rm e}$$

C.
$$\rho_{\rm m} = \rho_{\rm e}$$

D. No conclusion can be made about the densities.

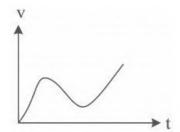
Answer: C

Solution:

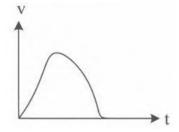

Solution:

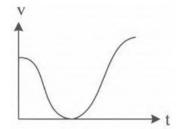
Question 75

A bar magnet falls from rest under gravity through the centre of a horizontal ring of conducting wire as shown in figure. Which of the


following graph best represents the speed (v) vs. time (t) graph of the bar magnet?

Options:


A.


В.

C.

D.

Answer: B

A uniform magnetic field B exists in a region. An electron of charge q and mass m moving with velocity v enters the region in a direction perpendicular to the magnetic field. Considering Bohr angular momentum quantization, which of the following statements is/are true?

Options:

- A. The radius of n th orbit $r_n \infty \sqrt{n}$.
- B. The minimum velocity of the electron is $\frac{\sqrt{qBh}}{m}$.
- C. Energy of the n^{th} level $E_n \infty n$.
- D. Transition frequency ω between two successive levels is independent of n.

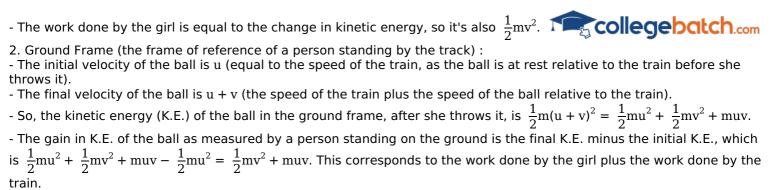
Answer: D

	ol	I		_		
•	NI		TI	n	n	•
9	U	u	U	·	11	•

_			
\sim	uti	nn	•
301	чч	VII.	

Question 77

A train is moving along the tracks at a constant speed u. A girl on the train throws a ball of mass m straight ahead along the direction of motion of the train with speed v with respect to herself. Then


Options:

- A. Kinetic energy of the ball as measured by the girl on the train is $mv^2 / 2$.
- B. Work done by the girl in throwing the ball is mv^2 / 2.
- C. Work done by the train is mvu.
- D. The gain in kinetic energy of the ball as measured by a person standing by the rail track is $mv^2/2$.

Answer: C

Solution:

- 1. Train Frame (the frame of reference of the girl on the train):
- The initial velocity of the ball is 0 (it's at rest before she throws it).
- The final velocity of the ball is v (after she throws it).
- So the kinetic energy (K.E.) of the ball in the train frame, after she throws it, is $\frac{1}{2}$ mv².

So, in conclusion:

- Option A is correct.
- Option B is correct.
- Option C is correct.
- Option D is incorrect because it's missing the term for the work done by the train (muv).

Question 78

A cyclic process is shown in p-v diagram and T-S diagram. Which of the following statements is/are true?

Options:

A. $1 \rightarrow 2$: Isobaric, $2 \rightarrow 3$: Isothermal.

B. $3 \rightarrow 1$: Isochoric, $2 \rightarrow 3$: adiabatic.

C. Work done by the system in the complete cyclic process is non-zero.

D. The heat absorbed by the system in the complete cyclic process is non-zero.

			-	
An	CTAZ	OT	•	

Solution:

Solution:			

Question 79

The figure shows two identical parallel plate capacitors A and B of capacitances C connected to a battery. The key K is initially closed. The switch is now opened and the free spaces between the plates of the capacitors are filled with a dielectric constant 3. Then which of the following statements is/are true?

Options:

- A. When the switch is closed, total energy stored in the two capacitors is CV².
- B. When the switch is opened, no charge is stored in the capacitor B.
- C. When the switch is opened, energy stored in capacitor B is $\frac{3}{2}$ CV²

D. When the switch is opened, total energy stored in two capacitors is $\frac{5}{3}CV^2$.
Answer: D
Solution:
Solution:
Question 80
A charged particle of charge q and mass m is placed at a distance 2R from the centre of a vertical cylindrical region of radius R where magnetic field varies as $\vec{B} = (4t^2 - 2t + 6)\hat{k}$, where t is time. Then which of the following statements is/are true?
Options:
A. Induced electric field lines form closed loops.
B. Electric field varies linearly with r if $r < R$, where r is the radial distance from the centerline of the cylinder.
C. The charged particle will move in clockwise direction when viewed from top.
D. Acceleration of the charged particle is $\frac{7q}{2m}$ when $t=2$ sec.
Answer: B
Solution:
Solution:
Chemistry
Question 1
Which of the following statements is incorrect?

Options:

- A. $[VF_6]^{3-}$ is paramagnetic with 2 unpaired electrons.
- B. $[CuCl_4]^{2-}$ is paramagnetic with 1 unpaired electron.
- C. $[Co(NH_3)_6]^{3+}$ is diamagnetic
- D. $[CoF_6]^{3-}$ is paramagnetic with 2 unpaired electrons.

Answer: D

Sal	ution	
201	นเบบน	,

Question 2

The calculated spin-only magnetic moment values in BM for $[FeCl_4]^-$ and $[Fe(CN)_6]^{3-}$ are

Options:

- A. 5.9 BM, 1.732 BM
- B. 4.89 BM, 1.732 BM
- C. 3.87 BM, 1.732 BM
- D. 1.732 BM, 2.82 BM

Answer: A

Solution:

Solution:

Question 3

${\rm BrF}_3$ self ionises as following

Options:

A.
$$2BrF_3 \rightleftharpoons BrF^+ + BrF_5^-$$

B.
$$2BrF_3 \rightleftharpoons BrF_2^+ + BrF_4^-$$

C.
$$2BrF_3 \rightleftharpoons BrF_4^+ + BrF_2^-$$

D.
$$2BrF_3 \rightleftharpoons BrF_3^+ + BrF_3^-$$

Answer: B

Solution:

Solution:

4f² electronic configuration is found in

Options:

A. Pr

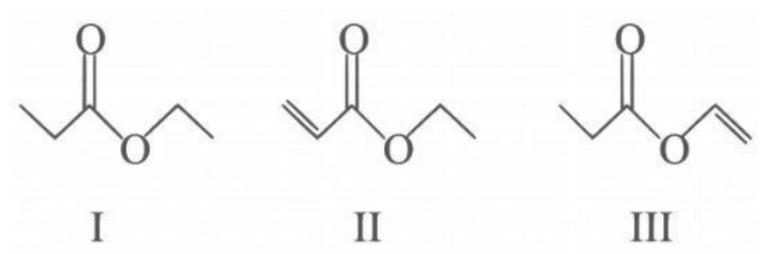
B. Pr³⁺

C. N d^{3+}

D. Pm³⁺

Answer: B

Solution:


Solution:

Let's consider the elements:

- Pr (Praseodymium) has an atomic number of 59. Its ground state electron configuration is $[Xe]4f^36 s^2$.
- Pr^{3+} (Praseodymium ion) will lose 3 electrons. It loses the two 6 s electrons and one from the 4f orbital. So, the configuration is $[Xe]4f^2$.
- $-\mathrm{Nd}^{3+}$ (Neodymium ion) with an atomic number of 60 , in its ground state has the configuration [X e]4f $^46\mathrm{s}^2$. When it loses 3 electrons (two from 6s and one from 4f), its configuration is [Xe] 4f3.
- Pm^{3+} (Promethium ion) with an atomic number of 61 , in its ground state has the configuration [X e]4f $^56s^2$. When it loses 3 electrons (two from 6s and one from 4f), its configuration is [Xe]4f 4 .

So, the $4f^2$ electronic configuration is found in \mbox{Pr}^{3+} . Hence, Option B is correct.

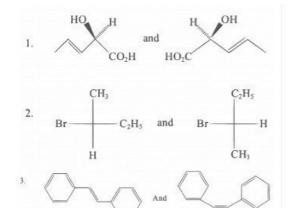
Question 5

The correct order of C = O bond length in ethyl propanoate (I), ethyl propanoate (II) and ethenyl propanoate (III) is

Options:

A. I > II > III

B. III > II > I


C. I > III > II

D. II > I > III

Answer: D

Solution: Collegebatch.com
Solution:
Question 6
Select the molecule in which all the atoms may lie on a single plane is
Options:
A. 4-Nitrobenzaldehyde
B. 4-Methoxybenzaldehyde
C. 4-Methylnitrobenzene
D. 4-Nitroacetophenone
Answer: A
Solution:
Solution:
Question 7
The IUPAC name of $CH_3CH = C - CH_2 - CH_3$
Options:
A. 3-Formyl-2-pentene
B. 2-Ethylbut-2-enal
C. 3-Ethylbut-3-enal
D. 2-Ethylcrotonaldehyde
Answer: B
Solution:

Question 8

The relationship between the pair of compounds shown above are respectively,

Options:

A. enantiomer, diastereomer, diastereomer

B. enantiomer, enantiomer, diastereomer

C. enantiomer, homomer (identical), diastereomer

D. homomer (identical), diastereomer, geometrical isomer

Answer: C

Solution:

Solution:

Question 9

The correct stability order of the following carbocations is

(I)
$$\mathbf{H}_{2}^{\circ}$$
 – \mathbf{CH} = \mathbf{CH} – \mathbf{CH}_{3}

(II)
$$^{\circ}$$
CH₂ – CH = CH – BMe₂

(III)
$$H_2^{\circ}$$
 – CH = CH – NMe

(IV)
$$\mathbf{H}_{2}^{\circ}$$
 – CH = CH – OMe

Options:

A.
$$II > I > III > IV$$

B. III
$$>$$
 I $>$ II $>$ IV

C.
$$III > IV > I > II$$

D.
$$IV > III > II > I$$

Answer: C

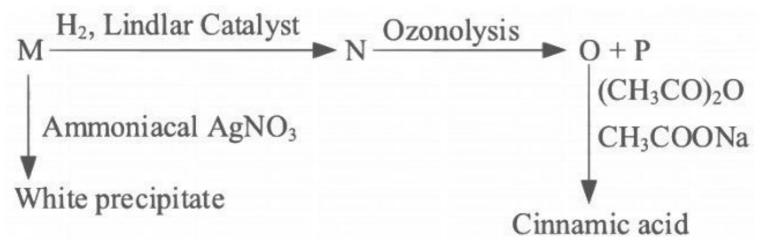
The correct order of boiling points of N-ethylethanamine (I), ethoxyethane (II) and butan-2-ol (III) is

Options:

A. III < II < I

B. II < III < I

C. II < I < III


D. III < I < II

Answer: C

Solution:

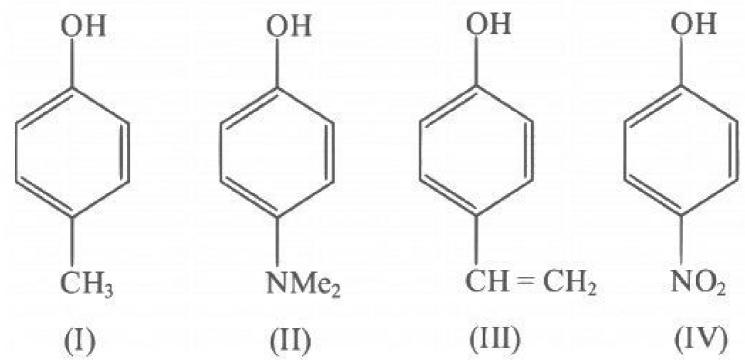
Solution:

Question 11

Structure of M is,

Options:

A.
$$Ph - C \equiv CH$$


B. Ph – C
$$\equiv$$
 C – CH₃

$$C. H_3C - C \equiv CH$$

D.
$$H_3C - C \equiv C - CH_3$$

Answer: A

The correct order of acidity of above compounds is

Options:

A. II > IV > I > III

B. III > IV > II > I

C. IV > II > III > I

D. IV > III > I > II

Answer: D

Solution:

Solution:

Question 13

If all the nucleophilic substitution reactions at saturated carbon atoms in the above sequence of reactions follow $S^{}_{N}2$ mechanism, then xE and

xF will be respectively,

A.

Options:

$$\begin{array}{ccc} H_3CH_2C & & H_3CH_2C \\ & & \\ H^{\text{uniform}} & OH & \text{and} & \\ H_3C & & H_3C \end{array}$$

В.

$$HO$$
 CH_2CH_3
 H_3C
 H_3C
 H_3CH_2C

C.

D.

Answer: D

Solution:

Solution:

Question 14

$$CH_1 \xrightarrow{O} CH_1 \xrightarrow{Br_2/AcOH} X \xrightarrow{Br_2/NaOH} Y + Z$$

The correct option for the above reaction is **Options:**

A.

$$X = CH_3$$
 CH_3 $Y = CHBr_3$ $Z = CH_3CO_2Na$

В.

C.

$$X = \begin{array}{c} O \\ \\ CH_2 \\ CH_2 \\ Br \end{array} \qquad Y = \begin{array}{c} CH_2 \\ CO_2 \\ Na \\ Br \end{array}$$

D.

Answer: A

Solution:

Solution:

Question 15

Arrange the following in order of increasing mass

I. 1 mole of N₂

II. 0.5 mole of O_3

III. 3.011×10^{23} molecules of O_2

IV. 0.5 gram atom of O_2

Options:

A. IV < III < II < I

B. IV < I < III < II

C. III < II < IV < I

D. I < III < II < IV

Answer: A

Solution:

Solution:

Question 16

Two base balls (masses : m_1 = 100g, and m_2 = 50g) are thrown. Both of

of m_1 . The ratio of de Broglie wavelengths $\lambda(m_1)$: $\lambda(m 2)$ is given by
Options:
A. 4:3
B. 3:4
C. 2:1
D. 1:2
Answer: B
Solution:
Solution:
Question 17
What is the edge length of the unit cell of a body centred cubic crystal of an element whose atomic radius is 75 pm ?
Options:
A. 170 pm
B. 175 pm
C. 178 pm
D. 173.2 pm
Answer: D
Solution:
Solution:
Question 18
The root mean square (rms) speed of \mathbf{X}_2 gas is xm / s at a given temperature. When the temperature is doubled, the \mathbf{X}_2 molecules

dissociated completely into atoms. The root mean square speed of the

sample of gas then becomes (in m / s)

them move with uniform velocity, but the velocity of \boldsymbol{m}_2 is 1.5 times that

Options:

collegebatch.com

B. x	collegebatch.com
C. 2x	3
D. 4x	
Answer: C	
Solution:	
Solution:	
Question 19	
Which of the following would give a linear process (k is the rate constant of an elementary reabsolute scale)	
Options:	
A. k vs T	
B. k vs 1/T	
C. In k vs T	
D. In k vs 1/T	
Answer: D	
Solution:	
Solution:	
Question 20	
The equivalent conductance of NaCl, HCl a dilution are 126.45, 426.16 and 91 ohm ⁻¹ c. The equivalent conductance of acetic acid (Ontions)	cm ² eq ⁻¹ respectively at 25°C.
Options:	

A. 461.61ohm $^{-1}$ cm 2 eq $^{-1}$

 $B.\ 390.71 ohm^{-1}cm^2eq^{-1}$

C. cannot be determined from the given data.

 $D.\ 208.71 ohm^{-1}cm^{2}eq^{-1}$

Answer: B

\mathbf{c}		•	on	
	V I I	171	Λn	•
. 71	,,,		1711	

Solution:		

For the reaction $A + B \rightarrow C$, we have the following data:

Initial concentration of A (in molarity)	Initial concentration of B (in molarity)	Rate (initial) (Relevant unit)
1	10	100
1	1	1
10	1	10

The order of the reaction with respect to A and B are

Options:

- A. Not possible to tell with the given data.
- B. First order with respect to both A and B.
- C. First order with respect to A and second order with respect to B.
- D. Second order with respect to A and first order with respect to B.

Answer:	C

Solution:

Calutiani

Solution.			

Question 22

If in case of a radio isotope the value of half-life (T $_{1/2}$) and decay constant (λ) are identical in magnitude, then their value should be

Options:

A. 0.693/2

B.
$$(0.693)^{\frac{1}{2}}$$

 $C. (0.693)^2$

Answer: B

Solution:

Solution:

Question 23

Suppose a gaseous mixture of He, Ne, Ar and Kr is treated with photons of the frequency appropriate to ionize Ar. What ion(s) will be present in the mixture?

Options:

A. Ar⁺

 $B. Ar^+ + Kr^+$

 $C. Ar^{+} + He^{+} + Ne^{+}$

D. $He^{+} + Ar^{+} + Kr^{+}$

Answer: B

Solution:

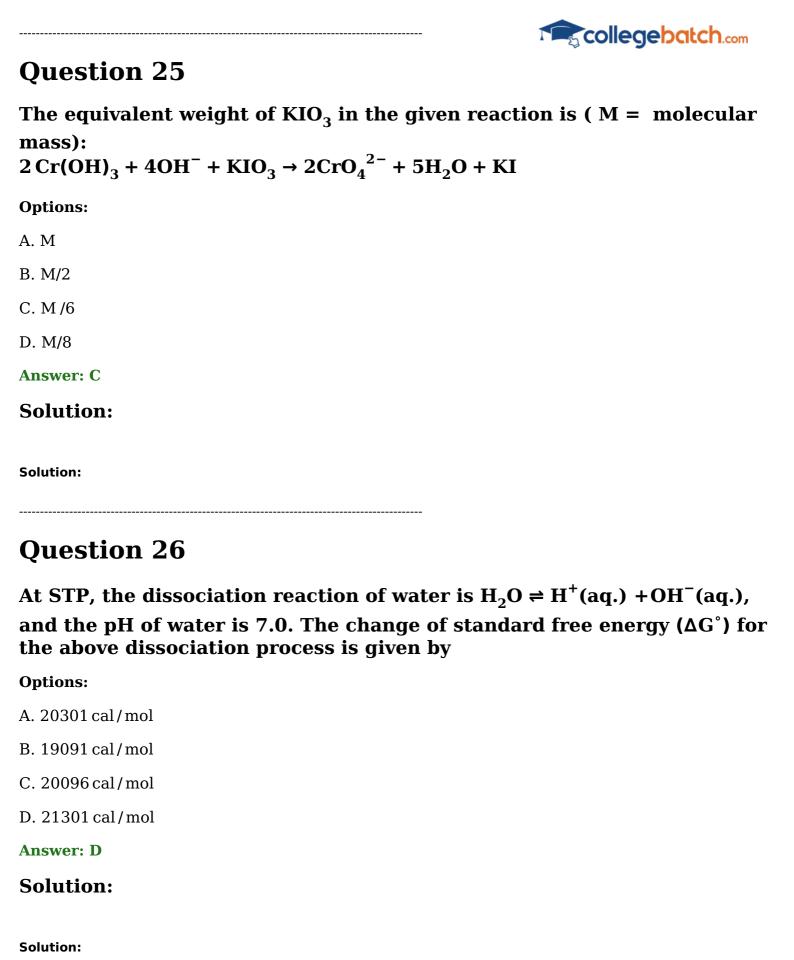
Solution:

Question 24

A solution containing 4g of polymer in 4.0 litre solution at $27\,^\circ C$ shows an osmotic pressure of $3.0\times 10^{-4}\,atm$. The molar mass of the polymer in g / mol is

Options:

A. 820000


B. 82000

C. 8200

D. 820

Answer: B

Solution:

Na₂CO₃ is prepared by Solvay process but K₂CO₃ cannot be prepared by the same because

Options: collegebatch.com A. K₂CO₃ is highly soluble in H₂O B. KHCO₃ is sparingly soluble C. KHCO₃ is appreciably soluble D. KHCO₃ decomposes **Answer: C Solution: Solution: Question 28** The molecular shapes of SF₄, CF₄ and XeF₄ are **Options:** A. the same with 2, 0 and 1 lone pairs of electrons on the central atoms, respectively. B. the same with 1,1 and 1 lone pairs of electrons on the central atoms, respectively. C. different with 0,1 and 2 lone pairs of electrons on the central atoms, respectively. D. different with 1, 0 and 2 lone pairs of electrons on the central atoms, respectively. **Answer: D Solution: Solution: Question 29** The species in which nitrogen atom is in a state of sp hybridisation is **Options:** A. NO₃ B. NO₂

C. NO₂⁺

D. NO₂

Answer: C

Question 30 The correct statement about the magnetic properties of [Fe(CN) ₆] ³⁻ and [FeF] ³⁻ is Options: A. Both are paramagnetic B. Both are diamagnetic C. [Fe(CN) ₆] ³⁻ is diamagnetic, [FeF ₆] ³⁻ is paramagnetic D. [Fe(CN) ₆] ³⁻ is paramagnetic, [FeF] ³⁻ is diamagnetic Answer: A Solution: Question 31 Nickel combines with a uninegative monodentate ligand (X ⁻)to form a
The correct statement about the magnetic properties of $[Fe(CN)_6]^{3-}$ and $[FeF]^{3-}$ is Options: A. Both are paramagnetic B. Both are diamagnetic C. $[Fe(CN)_6]^{3-}$ is diamagnetic, $[FeF_6]^{3-}$ is paramagnetic D. $[Fe(CN)_6]^{3-}$ is paramagnetic, $[FeF]^{3-}$ is diamagnetic Answer: A Solution: Question 31 Nickel combines with a uninegative monodentate ligand (X ⁻)to form a
[FeF] ³⁻ is Options: A. Both are paramagnetic B. Both are diamagnetic C. [Fe(CN) ₆] ³⁻ is diamagnetic, [FeF ₆] ³⁻ is paramagnetic D. [Fe(CN) ₆] ³⁻ is paramagnetic, [FeF] ³⁻ is diamagnetic Answer: A Solution: Ouestion 31 Nickel combines with a uninegative monodentate ligand (X ⁻)to form a
A. Both are paramagnetic B. Both are diamagnetic C. $[Fe(CN)_6]^{3^-}$ is diamagnetic, $[FeF_6]^{3^-}$ is paramagnetic D. $[Fe(CN)_6]^{3^-}$ is paramagnetic, $[FeF]^{3^-}$ is diamagnetic Answer: A Solution: Question 31 Nickel combines with a uninegative monodentate ligand (X ⁻)to form a
B. Both are diamagnetic C. $[Fe(CN)_6]^{3^-}$ is diamagnetic, $[FeF_6]^{3^-}$ is paramagnetic D. $[Fe(CN)_6]^{3^-}$ is paramagnetic, $[FeF]^{3^-}$ is diamagnetic Answer: A Solution: Question 31 Nickel combines with a uninegative monodentate ligand (X ⁻)to form a
C. $[Fe(CN)_6]^{3^-}$ is diamagnetic, $[FeF_6]^{3^-}$ is paramagnetic D. $[Fe(CN)_6]^{3^-}$ is paramagnetic, $[FeF]^{3^-}$ is diamagnetic Answer: A Solution: Question 31 Nickel combines with a uninegative monodentate ligand (X ⁻)to form a
D. [Fe(CN) ₆] ³⁻ is paramagnetic, [FeF] ³⁻ is diamagnetic Answer: A Solution: Solution: Question 31 Nickel combines with a uninegative monodentate ligand (X ⁻)to form a
Answer: A Solution: Solution: Question 31 Nickel combines with a uninegative monodentate ligand (X ⁻)to form a
Solution: Solution: Question 31 Nickel combines with a uninegative monodentate ligand (X ⁻)to form a
Solution: Question 31 Nickel combines with a uninegative monodentate ligand (X ⁻)to form a
Question 31 Nickel combines with a uninegative monodentate ligand (X^-)to form a
Nickel combines with a uninegative monodentate ligand (X ⁻)to form a
paramagnetic complex $[NiX_4]^{2-}$. The hybridisation involved and number of unpaired electrons present in the complex are respectively
Options:
A. sp ³ , two
B. dsp ² , zero
C. dsp^2 , one
D. sp ³ , one
Answer: A
Solution:
Solution:

$$\underbrace{L_{\text{(ii)}\text{H}_3\text{O}^{\oplus}}^{\text{(ii)}\text{Ph}\text{MgBr}}}_{\text{(iii)}\text{H}_3\text{O}^{\oplus}} > \underbrace{M_{\text{-}}^{\text{CrO}_3/\text{H}^{\oplus}}}_{\text{-}} > \underbrace{M_{\text{-}}^{\text{Ph}_3\text{P} = \text{CH}_2}}_{\text{-}} > \mathbf{Ph}_2\mathbf{C} = \mathbf{CH}_2$$

Options:

- A. Benzaldehyde
- B. Methyl benzoate
- C. Benzoyl chloride
- D. Benzonitrile

Answer: A

Solution:

Solution:

Question 33

' \underline{G} ' in the above sequence of reactions is

Options:

- A. (CH₃)₂CHCOOCH₂CH₃
- $\mathsf{B.}\ \mathsf{CH_3CH_2CH_2COOCH_2CH_3}$
- $\mathsf{C.}\ \mathsf{CH_3CH_2COOCH_2CH_2CH_3}$
- D. CH₃CH₂COOCH(CH₃)₂

Answer: C

Solution:

Solution:

Case - 1 : An ideal gas of molecular weight M at temperature T. Case - 2 : Another ideal gas of molecular weight 2M at temperature T/2. Identify the correct statement in context of above two cases.
Options:
A. Average kinetic energy and average speed will be the same in the two cases.
B. Both the averages are halved.
C. Both the averages are doubled.
D. Only average speed is halved in the second case.
Answer: B
Solution:
Solution:
Question 35
63g of a compound (Mol. Wt. = 126) was dissolved in 500g distilled water. The density of the resultant solution as 1.126g / ml. The molarity of the solution is
Options:
A. 1.25M
B. 1.0M
C. 0.75M
D. 1.1M
Answer: B
Solution:
Solution:
Question 36
An electron in the 5d orbital can be represented by the following (n, I, m) values

Options:

A. (5, 2, 1)

B. (5, 1, -1)

C.	/ -	\sim	1 \
	רו	()	
\sim .	ιυ.	υ.	/

D. (5, 2, -1)

Answer: A, D

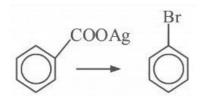
Solution:

collegebatch.com

Solution:

Question 37

The conversion(s) that can be carried out by bromine in carbon tetrachloride solvent is/are


Options:

A. $PhCH = CHCH_3 \rightarrow PhCHBrCHBrCH_3$

В.

C. CH₃CH₂COOH → CH₃CHBrCOOH

D.

Answer: A, D

Solution:

Solution:

Question 38

The correct set(s) of reactions to synthesize benzoic acid starting from benzene is/are

Options:

A. (i) Br_2/Fe , (ii) Mg/dry ether, (iii) CO_2 , (iv) H_3O^{\oplus}

B. (i) $\mathrm{Br}_2/\mathrm{Fe}$, (ii) NH_3 , 25°, (iil) NaNO_2 , dil. HCl, 0° to 5°, (iv) $\mathrm{CuCN}/\mathrm{KCN}$, (v) dil. HCl, Δ
C. (i) CH_3Cl , Anhydrous $AlCl_3$, (ii) $KMnO_4 ^{\overset{\circ}{O}}H$, Δ , (iii) $H_3\overset{\circ}{O}$	collegebatch.com
D. (i) CH ₃ COCl, Anhydrous AlCl ₃ , (ii) Br ₂ , NaOH, (iii) H ₃ O [®]	
Answer:A, C, D	
Solution:	
Solution:	
Question 39	
Which statement(s) is/are applicable above critical tem	perature?
Options:	
A. A gas cannot be liquified.	
B. Surface tension of a liquid is very high.	
C. A liq. phase cannot be distinguished from a gas phase.	
D. Density changes continuously with P or V.	
Answer: A, D	
Solution:	
Solution:	
Question 40	
Which of the following mixtures act(s) as buffer solution	on?
Options:	
A. NaOH + CH ₃ COOH (1: 1 mole ratio)	

B. $\mathrm{NH_4}\,\mathrm{OH} + \mathrm{HCl}$ (2: 1 mole ratio)

C. $CH_3COOH + NaOH$ (2: 1 mole ratio)

D. $CH_3COOH + NaOH$ (1:2 mole ratio)

Answer: B, C